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Abstract—Plausible deniability (PD) allows at-risk users to
deny the existence of their sensitive data stored on storage
devices. This is critical to protect the privacy and the personal
safety of users, as adversaries might force users to decrypt
their devices, risking the disclosure of sensitive data that could
endanger their lives and liberty.

In this work, we show how current PD systems built
on flash memory fail to obscure distinguishable data layouts
created when hidden data is written. This deficiency makes
them vulnerable to coercive adversaries who can capture single
or multiple data snapshots of storage devices for scrutiny. To
defend against this threat, we propose MUTE, a perMUTation-
based PD systEm designed for flash memory. Building upon
widely-adopted full disk encryption (FDE) mechanisms that
provide device-level data encryption, MUTE modifies the dis-
tribution of initialization vectors (IVs) for encryption blocks
within FDE, translating the hidden data into a permutation
derived from the IV. Unlike other PD solutions, MUTE allows
for storing hidden data without requiring the reduction of
storage capacity. Moreover, it preserves the plausible deni-
ability of the hidden data in a provably secure manner by
maintaining the original logic of data operations on the flash
memory without changing the data layout. We implement
MUTE in the flash translation layer (FTL) of flash-based SSDs
using FEMU, a widely-used emulator supporting flash mem-
ory research. Our evaluation with various micro-benchmarks
and real-world workloads demonstrates that MUTE provides
practical write and read throughputs of 23.4 MB/s and 15.7
MB/s and a capacity of 25.3 GB for hidden data in a 512 GB
SSD, comparable with existing PD systems. MUTE achieves
strong PD guarantees for flash-based devices against coercive
adversaries, outperforming current PD systems.

Index Terms—Plausible Deniability, Data Layout, Flash-based
SSDs

1. Introduction

With escalating threats from authoritarian regimes and
pervasive stringent law enforcement [9], [15], protecting
sensitive information for vulnerable individuals and at-risk
users, such as human rights activists and journalists, is
critical for their safety and privacy. Traditional full disk
encryption (FDE) [18] is widely used to protect sensitive
data by making it inaccessible without the correct encryption
key. However, adversaries may coerce users to surrender

their keys, bypassing encryption protections. Consider real-
world scenarios where individuals face extreme risks to pro-
tect their data. For example, secondary screenings of jour-
nalists crossing borders threaten press freedom, as agents
conduct warrantless searches of devices like laptops and
phones [33]. A videographer in Syria concealed a micro-SD
card, which contains evidence of human rights violations,
within a wound, smuggling it past hostile forces [12]. In
these examples, discovering hidden data could result in life-
threatening risks to users.

Plausible deniability (PD) offers a critical protection
layer by allowing users to deny the existence of any sensitive
data on their storage devices against coercive adversaries.
Consider the examples above: the storage devices, rather
than being smuggled at great risk to the carrier, could instead
be presented to an authority without revealing sensitive data.
This is especially crucial to protect high-value targets, such
as journalists and whistleblowers. A PD system is typically
employed as a standard feature within the FDE module [7],
[29] to conceal the “pattern of accesses” [25] for hidden
data. It allows users under coercion to reveal a decoy key
that decrypts only non-sensitive (public) data while keeping
the key for hidden data secret without raising suspicion.

Implementing PD in flash memory, a widely-used stor-
age media in solid-state drives (SSDs) and mobile devices,
presents significant challenges. Traditional PD systems [25],
[10], [59], [26], [28], [68] are primarily designed for hard
disk drives (HDDs), which support secure data deletion and
in-place data updates. However, flash memory uses a flash
translation layer (FTL) that remaps data to different physical
locations, leaving remnants of deleted data and creating
distinctive data patterns, which can inadvertently reveal the
presence of hidden data [44].

In this paper, we introduce a novel data layout (DL)
attack that allows adversaries to identify abnormal data lay-
outs on flash memory. We propose MUTE, a perMUTation-
based PD systEm in flash-based storage, to address the DL
attack and provide robust PD guarantees, overcoming the
following limitations presented in current flash-based PD
systems [67], [44], [29], [45], [58]:

(1) Suspicious Data Layout Alterations. The FTL assigns
physical pages to incoming data in a predictable man-
ner [47]. Thus, the data layout on flash memory exhibits
observable patterns when users store a file on the device.
However, current PD systems either modify the public data
content [29] or manipulate the data allocation [67], [44], [45]
for writing hidden data. This disrupts the normal data layout,



creating a distinctive marker of hidden data’s presence.

(2) Vulnerable to Multi-Snapshot Attacks. Current PD
systems are vulnerable to adversaries capable of obtaining
multiple data snapshots over time [25], [26]. A realistic
example is when users travel with their devices. Individuals
may lose direct control of their devices in various situations,
such as during airport security inspection or when devices
are left unattended in hotel rooms, making them vulnerable
to “hotel maid” attacks [29], [25]. Thus, adversaries can
detect hidden information by analyzing changes in random
data across multiple snapshots. Unfortunately, current flash-
based PD systems either only protect against single-snapshot
adversaries [67], [44] or remain vulnerable to the DL at-
tack [26], [29], [58], [45].

(3) Potential Hidden Data Loss. Current PD systems
require explicit storage space for hidden data, reducing the
storage efficiency for public data; for example, PEARL [29]
reserves 20% of a device’s capacity for hidden data, and
MDEFTL [45] stores the hidden data directly in flash mem-
ory. However, since the storage is unaware of the hidden
data when users operate public data, writing public data can
potentially overwrite hidden data, resulting in its loss.

MUTE outperforms current PD systems in the following
aspects. (1) MUTE provides a provably secure PD protection
for hidden data against multi-snapshot and DL attacks,
whereas current systems cannot protect PD under these
threats. (2) MUTE modifies the FDE logic without changing
other FTL operations, reducing the system complexity with-
out creating detectable patterns, such as DL attacks, that can
compromise PD guarantees. (3) MUTE does not consume
the storage capacity for hidden data, preventing it from being
overwritten when users operate the public data.

The core idea of MUTE arises from the observation
that modern implementations of FDE on flash-based storage
predominantly leverage XTS-AES [42] for encryption. XTS-
AES operates at the granularity of data units (flash pages),
where each data unit can be divided into multiple encryption
blocks (either 128 bits or 256 bits). Each encryption block
within a data unit is assigned a unique integer as an Initial-
ization Vector (IV) for encryption. Thus, the arrangement of
IVs results in a permutation of multiple integers. We design
MUTE to leverage permutation unranking and ranking op-
erations for data hiding. Permutation unranking converts an
integer into a permutation of elements within a set, whereas
ranking transforms a permutation back into an integer value.
Consequently, MUTE encodes hidden data as an integer
to represent the ranking value, which is mapped to the
permutation of IVs via ranking and unranking operations.
Then, MUTE encrypts public data using the permuted IVs,
embedding the hidden data within the standard encryption
process without altering the public data’s content or stor-
age patterns. Retrieving the hidden data involves reversing
this process by extracting the IV’s permutation from the
encrypted data. We thus make the following contributions:
e We derive a data layout (DL) attack that can compromise
state-of-the-art PD systems designed for flash memory.

e We propose MUTE, a novel PD system that offers ro-
bust PD guarantees against multi-snapshot and DL attacks

without occupying space for public data.

e We generalize plausible deniability with data layout as
a security concept for PD systems by framing it within an
indistinguishability game. Using this framework, we prove
the security of existing PD systems and MUTE.

e We implement MUTE in FEMU [53], a widely used
SSD emulator. Our evaluation shows that MUTE achieves
23.4 MB/s write and 15.7 MB/s read bandwidths for hidden
data, with a 25.3 GB hidden capacity, comparable to current
multi-snapshot PD systems [29], [45].

2. Background

2.1. Flash Memory

NAND flash has been widely used in solid-state drives
(SSDs) due to its high performance and power effi-
ciency [64]. Flash cells are grouped into pages (e.g., 4KB),
which serve as the I/O access granularity. Each flash page
is associated with an out-of-bound (OOB) area, which is
typically 10% [55] of a flash page and used for metadata
storage. Pages are grouped into a flash block containing 32
to 256 pages. Flash memory erases data at block granularity,
but block erasure is time-consuming and can degrade the
lifetime of the storage medium. Thus, it employs out-of-
place writes, retaining old data until it is garbage collected.
Parallelism. Flash-based SSDs contain high parallelism for
simultaneous data processing. Incoming I/O requests are
distributed to different bus channels (CH). Each channel
connects to multiple flash chips, known as logical units
(LUNS), which can operate independently. Each flash chip
consists of multiple dies, further divided into planes (PLs),
each with its own register for plane-level parallelism.

Flash Translation Layer (FTL). FTL provides numerous
functions to manage data accesses. Address translation con-
verts logical page addresses (LPAs), derived from logical
block addresses (LBAs) at the OS, into physical page ad-
dresses (PPAs) in flash memory. Garbage collection (GC)
is designed to reclaim invalidated pages by migrating valid
pages in a flash block and erasing the block containing
invalidated pages. Since flash memory has a limited number
of program/erase cycles [51], FTL also implements wear-
leveling to distribute erasures evenly across blocks and
manages worn-out blocks through bad block management.

2.2. Full-disk Encryption

Full-disk encryption (FDE) is crucial to protect the
confidentiality of data at rest. IEEE Standard P1619 [42]
defines the implementation of the XTS-AES encryption
for block-oriented storage devices, which is recommended
by NIST [34] and used by modern SSDs to implement
FDE [60], [78]. Figure 1 shows the workflow of XTS-AES.
To use XTS-AES, data is first divided into fixed-size units
corresponding to flash pages. Each data unit is then split into
encryption blocks of 128 or 256 bits. A randomly generated
tweak value (TV) is assigned to each data unit and shared
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Figure 1: The workflow of XTS-AES. PTX indicates the
plaintext, while CTX is the ciphertext.
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among its encryption blocks to prevent duplicate encrypted
units. To ensure the uniqueness of encrypted blocks, each
encryption block is assigned with a unique j to generate o,
where « is a primitive element of a finite field GF(2!28) or
GF(2%9).! XTS-AES multiplies the encrypted TV with o/,
and this value is used in XOR operations with the plaintext
and ciphertext during encryption and decryption. Since j
is incrementally generated for each encryption block to
ensure uniqueness, we define it as the IV of each encryption
block. We later discuss in Section 5 how we leverage the
permutation of IVs to store hidden data.

2.3. Data Hiding Techniques

Data hiding techniques have been employed in encryp-
tion software, such as TrueCrypt [6] and VeraCrypt [7], to
prevent the disclosure of sensitive data on a storage device.
A data-hiding scheme creates two encrypted volumes in the
storage device. The public volume stores data that users
feel free to surrender to adversaries, whereas the hidden
volume contains the sensitive data that users want to protect.
In these schemes, the storage space is filled with random
data, and then hidden data is written such that it also
appears as random data without being disclosed. However,
flash memory changes assumptions about data hiding. Since
flash memory writes data in an out-place fashion, “deleted”
hidden data (random) persists in storage. Therefore, these
changes result in observable patterns of random data that
cannot be plausibly explained [44].

3. Model

3.1. System Model

We assume that users hold a flash-based storage device
(e.g., SSD) to store hidden or public data. Hidden data
requires the highest-level protection against adversaries who
might use coercion to access sensitive information. In con-
trast, public data is surrendered without repercussion and
without disclosing the hidden data. Both types of data should

1. The power is the size of the encryption block which is 128 or 256
bits.

be encrypted using cryptographically-secure implementa-
tions [44], [29]. When coercion happens to the user, they
surrender the public data key while denying the existence
of the hidden data and keeping the hidden key confidential.
The storage device provides public and hidden modes
as in a typical PD system. Users must use a correct pass-
word, either a public or hidden password, to initiate the
respective PD mode. The public and hidden encryption keys
are derived from the corresponding public and private pass-
words upon user authentication using the securely-created
password at boot time. We assume the user can operate the
storage device securely within a session in which the user
is authenticated at the beginning, consistent with prior PD
works [25], [67], [44], [29], [45]. Upon the completion of
the data operation (public or hidden), the user can inform
the storage device to end the session. Finally, we consider a
common assumption that the storage device is equipped with
a secure random number generator [71], [76], [44], such as
using hardware-based randomness sources [70], providing
sufficient randomness without being compromised.

3.2. Adversarial Model

We assume a multi-snapshot adversary that has multiple
opportunities to image the storage device during which data
writes can happen between snapshots [29], [25]. Then, we
make these additional assumptions:

e We assume a computationally-bounded adversary capable
of coercing the user to surrender the storage device and
its encryption key. However, the adversary ceases coercion
once convinced that no hidden data exists.

e We consider a threat model similar to other works on PD
storage [67], [44], [29], [45], [25], [26], [28]. Specifically,
we assume a common scenario where a user employs a
PD system integrated into the computer system, akin to
standard commercial solutions like NTFS Alternate Data
Streams employed in Windows OSes [11]. Adversaries can
be aware of the PD system’s presence but cannot infer the
keys/passwords for either the hidden or public modes. Note
that the mere presence of a PD system does not serve as
a red flag, as it cannot prove the existence of hidden data
unless adversaries can find the patterns of accesses [25] of
hidden data made by users. This is a common assumption
in PD research, as PD systems can be explained as standard
features in computer systems. Legal risks arise only when
the existence of hidden data is confirmed; merely possessing
a data-hiding tool does not lead to legal repercussions [13],
[14], [16]. Thus, the employment of MUTE does not itself
imply the use of hidden data storage.

e Before exiting the secure session, users perform a final
operation — such as a graceful power-down with secure
memory erasure [50] — to ensure that no data remnants
remain in volatile memory. Therefore, adversaries cannot
access the user’s device, including the DRAM, storage
device, processor, and OS in this session. This is a common
model [29], [44], [67], as users are unlikely to operate hid-
den data in the presence of adversaries. Monitoring online
I/O traffic makes it impossible to provide PD guarantees.



e Adversaries can extract the raw data from flash chips?
[41], [35], [40], [80], including both data page and OOB
area. This is practical during coercive storage inspection and
consistent with existing PD works [29], [30], [44], [45].
Specifically, adversaries can access raw data by unsoldering
flash memory chips and connecting them to a specialized
hardware board [75], or even without physically removing
the chips at all [61]. Furthermore, modern data forensic tools
now support extracting data from more advanced flash chips,
such as 3D NAND flash memory [21].

e We assume that adversaries can detect hidden data in a PD
system by identifying anomalous data layouts, as insecure
PD systems may create suspicious layouts when managing
sensitive (hidden) data, differing from those generated in
public mode. Thus, data layout patterns can reveal the
hidden data existence, compromising PD guarantees.

3.3. Generalizing Plausible Deniability

We generalize the storage device and plausible denia-
bility to verify a PD system’s security in a provably secure
way. The storage space is divided into public V), and hidden
V, volumes, which are assigned with different passwords
P, and Py,. Despite the well-known security vulnerabilities
of password use, we assume the password can be selected
securely for simplicity. Then, the password can be used to
derive an encryption key that contains at least s bits of
entropy [25]. We define s as a security parameter [48].

A volume consists of logical data blocks [b;, where
each logical block is associated with a physical flash
page pg;, which has the address addr, Therefore, the
data layout of N physical flash pages UN,{pg;} can be
represented by the collection of physrcal page addresses
UN  {addr;}. In addition, the storage device contains k files
F ={f1.fa,--., fr}, where each file f; is associated with
Jj data blocks B/ = {j logical data blocks in file f;}.

We create a PD game [25] to formalize the security of
the PD guarantee. We define an adversary .4 who can ask a
challenger C to execute a sequence of write accesses O =<
01,09, ...,0, >, Where each access o; writes data on either
V, or V. Then, the PD game runs as follows:

1) The challenger C initializes the public V), and hidden
Vp, volumes using passwords P, and Py, with the secu-
rity parameter s, respectively. Moreover, the challenger
C generates a random bit b € {0, 1}.

2) The challenger C provides the public password P, to
adversary A without revealing the hidden password Py,.

3) The adversary A selects two write access sets: O 1,
which includes only writes to the public volume V,,
and O 1, which contains writes to both volumes V),
and V. Finally, A sends Oy 1 and O ; to C.

4) The challenger C executes Op 1 on V, and Vp,.

2. We primarily consider NAND flash in our paper, as it is widely used
in storage. NOR flash is less used in data storage due to its lower density.
However, our method can also be applied to NOR flash because it has the
similar FTL method as NAND flash-based SSD [23].

5) The challenger C returns the storage snapshot, includ-
ing files F, raw data U '{pg;}, and data layout

Nb _*{addr;}, to the adversary A.
6) Repeat steps 3 to 5 for r rounds (for r at most poly-
nomial in s).
7) The adversary outputs bit b’

Definition 1. We define a PD scheme under the restrictions
to be secure when a negligible function negl(s) in security
parameter s exists for any probabilistic polynomial time
(PPT) adversary A, such that:

Pr(t =b) < 5T negl(s)

Restrictions. The adversary A can only snapshot the storage
once users unmount the device after a session as discussed
in Section 3. While the game rounds are probabilistic poly-
nomial times, it is impractical for users to surrender their
devices exponentially many times. Moreover, since A has
password P, for public volume V,,, A can easily identify the
hidden volume V}, if Oy ; and O; ; contain different amount
of writes to V,,. Thus, we restrict that, for any Op ; and Oy ;
chosen by A, the data written to V), must be identical.

PD Description. The definition indicates that a secure PD
system renders the hidden and public accesses indistinguish-
able. When b = 0, all accesses in Op; are posed on public
volume V,. When b = 1, a secure PD system ensures that
any accesses in (J; ; containing writes to the hidden volume
V), can be plausibly explained by the accesses in Op ;. Thus,
A cannot distinguish between the writes in Op ; and O ;.

The access patterns Op ;1 and O ; impact the storage in
terms of data content and layout. When b=0, Op,; writes
public data 1nt0 N1 flash pages UZ i {pgo,i} in V, with
data layout U %" {addro ;}, where pgo; is the data page at
address addro7 When b = 1, O;,; operates on both V),
and V. It writes N1 1 flash pages, denoted as LJZ Hpg1i}
with data layout U " {addry ;}, where pgy ; is a flash page
at address addrl,, Thus a secure PD system ensures the
indistinguishability between O ; and O ; if, for any access
pattern O 1, there exists O 1 capable of producing identical
sets of UN1 {pg1.;} and U;_i" {addry ;}.

We adopt a proof by counterexample approach [73] in
our PD game to evaluate the PD guarantees provided by
existing PD works when using secure cryptography with
security parameter s. Definition 1 indicates that the ac-
cess patterns in (O ; can always be plausibly explained
by accesses in O ;. If b = 1, the adversary A can be
plausibly convinced that &’ = 0 and &’ # b. This implies, for
polynomial rounds of game, Pr(t/ = b) ~ Pr(b # b) ~ 3
However, if the adversary .4 can choose access patterns
Op,1 and Oy ;1 such that O, ; cannot be plausibly explained
by Op,1, A can infer that b =b= 1, thereby increasing
Pr(t’ = b). Thus, Pr(t/ = b) > 3 + negl(s), violating
Definition 1, and the PD guarantee is broken.

4. Data Layout Attack

Flash memory uses data allocation algorithms to assign
incoming data to physical flash pages, making the data
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Figure 2: The data layout of data writes on flash memory.
Data are written to flash memory consecutively in the time-
line. They are distributed with the channel-first algorithm.

layout on flash memory predictable. We use the channel-
first algorithm as an exemplar due to its wide adoption
in current SSDs [47], although other algorithms can be
applied. In Figure 2, the channel-first algorithm writes data
by sequentially accessing channels to allocate flash pages —
for instance, page 0 and page 1 possess different CH IDs
— while other parameters such as LUN and PL remain the
same. After a channel traversal finishes, it traverses LUNs
within a channel for subsequent page allocations. Finally, it
starts the PL traversal.

Since adversaries can physically access the storage de-
vice, they can identify the layout of user data and metadata
on flash memory, including the address translation mapping
tables. This can be accomplished by performing off-the-shelf
analysis on flash chips [80], [41], [35], [40], [75] or by using
advanced tools to access the controller and read the raw
data [21]. As users surrender their devices with only public
data keys under coercion, adversaries can access users’ files
in the OS and identify their data layouts on flash memory.

4.1. DL Attack

We propose and demonstrate a data layout (DL) attack

to identify the abnormal data distributions on flash memory
that can reveal the existence of hidden data. Three DL ab-
normalities can be exploited to break the current flash-based
PD systems [44], [58], [67], [29], [45], [30]. We provide the
detailed PD proof of current PD schemes in Section A.
(1) Adjacent Layout Exploitation. The FTL assigns phys-
ical pages consecutively for incoming I/O requests. Assume
a single-snapshot adversary, when b = 0, Oy ; operates
on V,, writing Ny flash pages Ué\fi] {pgo.;} with data
layout Uﬁ’il {addro ;}, which has an adjacent pattern. When
b = 1, Oy, involves both V, and V},, writing N1 flash
pages to the storage. However, adversary A may inten-
tionally select an access pattern O;; =< Op,(’)h,(’);, >,
where hidden volume accesses occurs between two sets of
public volume accesses. This creates a non-adjacent layout:
Ug;ll{addrlyi} U Uﬁl]‘.l{addrlyi}, in which addry j_; and
addry ; are not consecutive. This data layout cannot be
plausibly explained by O ;. Thus, adversary .A can identify
the undecryptable flash pages located among the public data,
violating the expected continuous public data layout.

Current flash-based single-snapshot PD systems [44],
[67] are vulnerable to this issue. They adopt the traditional
data allocation method of assigning flash pages consecu-
tively for both public and hidden data. O; ; can produce a
distinguishable® layout that cannot be generated by Oo,1-

(2) Exploiting Random Data Relocation. Current PD
systems [45], [58] designed to defend against multi-snapshot
adversaries embed hidden data within previously-filled ran-
dom data. The GC of flash memory can migrate valid flash
pages to other locations for storage efficiency. However,
hidden data may need to be migrated during GC, creating
distinguishable patterns of random (hidden) data relocation.

Consider a multi-snapshot adversary that runs the PD

games for r rounds. When b =0, inround k£ (1 < k < 1),
Oo,r, only writes public data to V,. Since the device is
unaware of hidden data in the public mode, GC can directly
overwrite the selected \j , random data pages U?fi’“ {pgo,i}
located at Uffl”“ {addry;} by migrating valid public pages
to these locations. When b = 1, O, j, writes both public and
hidden data. Subsequently, in round k+1, Oy ;41 could trig-
ger GC after writing public data. Then, it migrates N7 j4+1
valid flash pages to other locations U{\Qi’““ {addry ;}, which
might contain hidden data pages U;_{"**{pg1,;}. However,
to avoid erasing the hidden data, they need to be migrated to
other storage space with new data layout U?Qik“ {addr;ﬂ;}.
By comparing storage snapshots taken at rounds k and k41,
adversary A can identify this relocation of data originally
marked as random, breaking plausible deniability.
(3) Semantic-aware Layout Exploitation. Current multi-
snapshot PD systems [30], [29] also reply on encoding the
hidden data within the public data for robust PD guarantees.
This requires to altering the public data for the hidden data
written. However, modern applications can exhibit specific
data access patterns. A well-known phenomenon is data
hotness [65], [24], [52], where a small subset of hot data
serves the most I/O requests while most cold data remains
unmodified; for example, downloaded files in a web browser
typically remain unchanged. Thus, any alterations to cold
public data may raise suspicion from adversaries.

When b = 0, in round k, Oy ) operates solely on V),
and writes n files 7 = {f1, f2, ..., fn}, Which corresponds
to Np,1 public data pages U;_;'{pgo,;}. These files and
data pages remain unchanged unless explicitly modified or
deleted by Op ;. When b = 1, Oy, writes n public files
F = {f1,f2,..., fn} to the storage. However, these files
may include cold files F = {f{, fQ,, cee f;n}, where m < n
and F € F , which are unlikely to be modified. In round
k+1, Oy 41 may cloak the hidden data within the public
data associated with F resulting in the modification of F "
By analyzing the snapshots taken at rounds k£ and k + 1,
adversary A can detect anomalous changes in cold data,
thereby compromising plausible deniability.

3. Distinguishable evidence indicates that it contains a data layout gen-
erated by O 1 that cannot be explained by operations in Og 1. Thus,
|Pr(b’ = b) — Pr(b’ # b)| > negl(s).
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Figure 3: The design overview of MUTE, including (a) permutation translations, (b) data distributions, and (c) I/O workflows.

5. MUTE Design

Current PD systems are vulnerable to the DL attack, as
they need to explicitly write hidden data to flash memory
or alter public data, inevitably changing the data layout.

To solve these limitations, we propose MUTE, which
encodes hidden data by permuting the IVs of public data.
Each IV permutation corresponds to a rank value that repre-
sents the hidden data as shown in Figure 3a. These permuted
IVs are stored in the out-of-bound (OOB) area, while the
flash page contains the encrypted public data, as illustrated
in Figure 3b. The workflow for MUTE’s I/O operations
in hidden mode is detailed in Figure 3c. For hidden write
requests, MUTE first applies the UN RAN K function to
convert the hidden data into IVs @. Then, MUTE uses
the generated IVs to encrypt public data during the FDE
process before writing the encrypted public data into flash
memory, while the IVs are stored in the OOB area @. To
ensure that the IVs for public data are indistinguishable from
those cloaked with hidden data, MUTE randomly shuffles
the arrangement of IVs for written public data in public
mode.] For hidden read operations, MUTE retrieves the IVs
from the OOB area (D. Then, it uses the RAN K function
to translate the permutation of extracted IVs into the hidden
data @.

5.1. Permutation Primer

MUTE permutes the IV assignments of FDE to write
hidden data. A permutation of n elements indicates their
arrangement in a specific order. For simplicity, we assume
an integer set S = {0, 1,...,n— 1} with n elements, where
each member in S is unique and n > 1. Then, we define a
permutation of S as m = mg,m,...,Tpn—1, Where m; € S
andm- ¢ {0,...,7'1'7;—1,7TZ'+].7...,TL—].}, 0<i<n—1.
Thus, the number of permutations in Sisn! =1-2---(n—
1) - n.

A bijective ranking rank takes a permutation 7 as the
input to produce an index rank(w). Permutation unranking
is the reverse function, converting a numeric ranking value v
(0 < v <nl—1) into a permutation © = unrank(v). Since
the highest rank value is n! — 1, the rank value can represent
loga(n!) data bits. A classical algorithm [62] provides O(n)
time complexity by simplifying the unranking algorithm. It

defines an unranking function and then derives the ranking
function from the unranking. A permutation 7 is initialized
as ww[i] =i fori =0,1,...,n—1. Thus, the unranking func-
tion converts a rank v into a permutation. In addition, the
ranking function converts the incoming permutation 7 into a
rank. Before starting the ranking, a permutation 7! is first
initialized by iterating 7~ ![x[i]] =i for i = 0,1,...,n— 1.
The unranking and ranking functions are defined as follows.
function UNRANK(n, 7, v) function RANK(n, w, 7 1)

if n > O then if n == 1 then

swap(w[n—1], 7[v mod n]) return 0

unrank(n — 1, m, |[v/n]) else
end if mid = w[n — 1]
return 7 swap(r[n—1], w[x~t[n—1]))

swap(m~[mid), 7= [n — 1])
return mid + n - rank(n —
1,m,m 1)
end if
end function

end function

5.2. Permutation-based Hiding

A flash page serves as an encryption unit containing
multiple encryption blocks, each associated with a unique
1V, as discussed in Section 2.2. We define a flash page con-
taining n encryption blocks {ebg,ebq,- - ,eb,_1}, which
are assigned with unique IVs {IV(,IVy,--- IV, _1}, where
IVi ¢ {IV(), L ,IVi_l,IVi_H, cee ,IVH_1}, 0 S ) S n—1.
In real-world XTS-AES implementation [42] of flash mem-
ory, the IVs of encryption blocks in a data unit are consec-
utive integers and assigned incrementally. Thus, the IVs of
a data unit are defined by equation I'V; = ¢, where 0 < ¢ <
n—1, and [IVO,IV1,- e ,Ianl] = [0, 1, e, — 1].

MUTE controls the allocation of IVs to encryption
blocks to store hidden data. Specifically, MUTE defaults the
IV set to integer values, where IV_SET = {0,1,--- ,n —
1}, similar to the integer set as discussed in Section 5.1.
Then, MUTE assigns IVs to encryption blocks with specific
permutations based on the hidden data. In Figure 3a, a
permutation of IVs can be translated into a rank value which
can be used to represent the hidden data. Thus, MUTE has
two main functions for hidden data write and read.
Hidden Write. Hiden data is cloaked within the public data
page by permuting IVs. However, the number of encryption



Algorithm 1 MUTE_Write.

Algorithm 2 MUTE_READ.

Require: H = Hidden data, n = Number of encryption blocks in a flash
page
1: I =loga(n!)
represent.*/
2: Np =len(H)
3: Npg = [N/
data.*/
4: 1V;ni ={0,1,--- ,n—1} /*Initialize IVs to {0,1,--- ,n — 1}.%/
5: for h; in H, where ¢ = 0,1,---, Npg — 1 do /*Divide H into Npq
data batches.*/

/*Number of data bits that a permutation can

/*Number of data bits in the hidden data.*/
/*Number of public pages needed for the hidden

6: rank = h; /*Take the hidden data h; as a rank value.*/
7: IVs = UNRANK(n, IV;n;, rank) /*Get IVs via the unrank
function.*/

8: PG = gc_get_pg() /*Get a migrated public page during GC.*/
9: PGnew = enc(TV,IVs, PG) /[*Re-encryption with new IV s.*/
10: flush(PGnew) /*#Store the PG peqw to a free flash page.*/
11: end for

blocks per flash page is limited, determined by the encryp-
tion granularity (128 or 256 bits) and the flash page size.
For simplicity, we define the number of encryption blocks
in a flash page as n. Algorithm 1 shows the procedure of
hidden data write. MUTE first gets the number of hidden
bits (i.e., ) that a flash page can represent. This number is
determined by [ = |log,(n!)] (see Section 5.1). Afterward,
the number of required public data pages IV,,, for the hidden
data is calculated by using [ to divide the total bits of hidden
data (i.e., IVp,). Thus, MUTE splits the hidden data into N,
data batches, each used to generate a permutation of IVs via
UNRANK function. Then, MUTE triggers GC to select
a valid public data page for migration and re-encrypts it
using new IVs. Finally, the re-encrypted public data page is
written to a free flash page. More details on MUTE’s design
for hidden write operations are provided in Section 5.6.
Hidden Read. MUTE handles the hidden read operation
as the reversed operation of hidden write. Algorithm 2
shows how the stored IVs can be interpreted into the hidden
data. MUTE first locates the flash page PG containing the
requested hidden data batch, described in Section 5.6, then
reads the IVs of the flash page from its OOB area. Finally,
MUTE ranks the permutation of fetched IVs to get the rank
value, which is the hidden data.

5.3. Randomizing Public Data Layout

Since hidden data is encrypted before cloaking into the
IVs of public data, the generated IVs containing hidden data
have a randomized look. However, IVs of the encrypted
block are typically generated incrementally. This makes the
hidden data distinguishable because the public data without
hidden data attached has incremental IVs, unlike the ran-
domized arrangement of IVs that contains the hidden data.

To overcome this limitation, MUTE shuffles IVs before
writing public data in public mode. MUTE first generates a
cryptography-secure random number as a rank value rank.
Then, it uses rank in the UNRANK function to obtain
a permutation of IVs. Finally, MUTE encrypts the public
data page with the generated /V's and writes the encrypted
public data into a flash page. MUTE ensures that public data

Require: batchynyum = The batch number of the hidden data, n = Number
of encryption blocks in a flash page
1: PG = locate_pg(batchnum)
hidden data.*/
2: IVs =read_oob(PG) /*Read the OOB area of a page PG to get
IVs.*/
3: for i in 0,1, - -
in Section 5.1.%/
: IVs—[IVs[i]] =14
: end for
. rank = RANK(n, IV's,IVs™) /[*Translate IV's to a rank value.*/
h = rank /*Take the rank value as hidden data.*/
: Return h /*Return the hidden data.*/

/*Locate the page containing the

,n—1do [*Initialize IV s~ as discussed

tied with IVs derived from hidden data is indistinguishable
from public data encrypted using randomly shuffled IVs.
This is because both types of IV permutations are derived
through cryptographically secure processes, making them
indistinguishable from each other.

5.4. Storage Modes

In public mode, hidden-related metadata should not ap-
pear in the DRAM of the storage device to prevent potential
side-channel attacks such as the cold boot attack [38] to
recover DRAM data. Thus, the FTL should not be aware
of hidden data existence in public mode. However, since
the GC is triggered when the free space reaches a threshold
(e.g., 20% of full capacity), the hidden data can be reclaimed
in public mode, leading to the hidden data loss. To overcome
this risk, MUTE introduces three PD modes described as
follows.

Hidden mode. This is the same as a traditional hidden mode
in previous PD systems and can be initiated only with the
hidden password. Incoming data is considered hidden and is
processed using MUTE’s permutation-based hiding method.
Public-hidden mode. This mode is reserved for trusted
users to operate on public data and requires both public
and hidden passwords to initiate. The public-hidden mode
allows the FTL to be aware of the hidden data, thus the
FTL can use the metadata of the hidden data stored in the
DRAM to avoid the erasure of hidden data during GC.
Public-only mode. This mode is enabled to serve public
data while the DRAM of the storage device does not store
any hidden-related metadata. Note that this mode is only
dedicated to adversaries for decoy purposes.

5.5. Metadata Management

MUTE contains the following metadata of public and
hidden data to handle I/O and GC operations, as shown
in Figure 4.

Metadata of public data. MUTE uses the current FTL
design [46], [37] to manage the metadata of public data.
It leverages an address mapping table (AMT) to maintain
the translation from LPA to PPA. However, the DRAM size
is too small to store the entire AMT. Thus, MUTE creates
a cached mapping table (CMT) to cache frequent-accessed
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Figure 4: Metadata required by MUTE to serve public and
hidden I/Os. In the public metadata, MUTE leverages CMT,
GMD and AMT to manage the address mapping, and it uses
BST for guiding GC. In the hidden metadata, MUTE creates
an HBT to record the mapping from the batch number to the
physical hidden data address and version number. Moreover,
each hidden batch contains metadata for managing purposes.

mapping entries in the DRAM. When cache misses happen
in CMT, MUTE uses a global mapping directory (GMD) to
track the mapping entries in the AMT, which is stored in the
flash memory. Finally, MUTE introduces a block state table
(BST) to record the invalidation status of the pages in a flash
block for GC. Note that the invalidation status includes the
number of invalidated data pages of a flash block.

Metadata of hidden data. Since each flash page contains
[ bits of hidden space as discussed in Section 5.2, MUTE
treats the [ bits of data as a hidden batch. Thus, MUTE
creates a hidden batch table (HBT), an in-memory data
structure, to maintain the mapping between the batch num-
ber of hidden data and the PPA of a flash page, which can
locate the IVs stored in its OOB. The HBT contains the
version number of each batch. Since hidden data can be
overwritten, the version number tracks the newest hidden
batch. MUTE reserves 56 bits in a hidden batch as the
metadata, including the batch number, version number, and a
hidden flag. The batch number serves as an identifier to track
the address of hidden data, while the hidden flag indicates
the presence of hidden data in the batch. In addition, the
hidden flag is truncated from the hidden data’s MAC value,
which is calculated using the BLAKE?2 hash algorithm [1].

5.6. I/0 Operations

Public write. Upon the arrival of a public write request,
MUTE allocates a free flash page for the incoming data,
where the page allocation is consistent with the traditional
algorithm as discussed in Section 4. In addition, the written
data needs to be encrypted before flushing into the flash
page to achieve FDE. Thus, MUTE leverages the encryption
method described in Section 5.3. Finally, MUTE updates the
AMT and CMT for the LPA with the new PPA.

Public read. MUTE queries the mapping tables to locate the
PPA of the read LPA requested by the public read operation.
If the LPA hits the CMT, MUTE reads the data page from
flash memory using the PPA cached in the CMT. Otherwise,
MUTE queries the GMD to pinpoint the mapping entry in
the AMT and then reads it to get the PPA. With the PPA,

the data page and its IVs can be read from flash memory.
Finally, MUTE decrypts the read data using its IVs and
returns the decrypted data to complete the read request.
Public-hidden write and read. The public-hidden write
and read have the same workflow as the public write and
read operations. However, the public-hidden mode differs
from the public-only mode in that it enables the FTL to be
aware of the hidden metadata. Therefore, MUTE can avoid
the erasure of hidden data when the public write operation
incurs garbage collection, and we will give more details in
the following garbage collection discussion.

Storage warm-up before initiating hidden mode. Since
hidden data are cloaked within the public data, the device
needs to have sufficient public data for the hidden data. Be-
fore activating the hidden mode, users should write adequate
public data into the storage device as in previous work [29].
Hidden write. MUTE triggers GC for writing hidden data.
The flash block with the most invalidated pages is selected
for reclamation during GC. For an incoming hidden write
request, MUTE encrypts the hidden data using the hidden
key, and the encrypted hidden data can be translated into I'Vs
using Algorithm 1. Afterward, MUTE selects a valid page,
which has no hidden data associated, from the chosen flash
block and decrypts the page using its IVs, which are stored
within the OOB area. Then, MUTE encrypts the valid public
data (decrypted) with the IVs, which are generated by the
hidden data, and the newly encrypted data is written into
a new flash page. Note that the new IVs should be written
into the OOB area of the new flash page.

Hidden metadata should be updated accordingly. MUTE

first checks the existence of the incoming batch number in
HBT. If it exists, MUTE updates the PPA of the entry in
the HBT to the new PPA and increments the version number
with 1. Otherwise, MUTE inserts a new mapping entry with
the batch number and PPA, setting its version number to 1.
Finally, before encrypting the hidden data, MUTE attaches
the associated metadata to the hidden data payload.
Hidden read. MUTE queries the HBT to locate the physical
page address of the hidden data. Then, the IVs in the OOB
area of the flash page associated with the searched PPA
can be fetched. Therefore, MUTE leverages Algorithm 2 to
translate the IVs into the encrypted hidden data, which is
further decrypted with the hidden key. Finally, the hidden
data can be returned to finish the read request.
Garbage collection. In public-only and public-hidden
modes, MUTE selects the flash block with the most invalid
pages for reclamation, while migrating valid pages to other
free blocks. First, MUTE decrypts the valid public data page
using the public key and the old IVs. Afterward, MUTE
generates new IVs via Section 5.3 to encrypt the public
data before migrating it to a new flash page. However,
the selected public data page may include hidden data.
In public-hidden mode, MUTE uses Algorithm 2 to rank
the old IVs into the encrypted hidden data, which are re-
encrypted with the hidden key to alter the original encrypted
content, preventing potential side-channel attacks (see Sec-
tion 6). Finally, MUTE executes Algorithm 1 to cloak the
re-encrypted hidden data within a new public data page.



Updating public and hidden data generates stale data.
This brings two challenges. (1) Invalidated public data pages
may contain hidden data, which should be preserved during
GC. (2) Hidden data cloaked within a public data page might
be outdated and should not be migrated. For challenge (1),
MUTE inspects the invalidated flash pages before the flash
block erasure. Specifically, MUTE verifies the presence of
hidden data by checking the hidden flag. If hidden data
exists, MUTE re-encrypts it and attaches it to a valid public
page for migration during GC. Otherwise, the flash page is
erased directly. For challenge (2), before migrating hidden
data, MUTE verifies the version number of the hidden
data using the HBT to preserve the newest hidden data by
attaching it to a new public flash page. If the hidden data is
not the latest version, MUTE does not migrate it.

6. PD Analysis For MUTE

We verify the security of MUTE using the PD game
described in Section 3.3. The PD game is conducted over r
rounds. In round k£ (1 < k < r), the PD game has access
set Op i on public volume and set O; ;, on both public and
hidden volumes. Based on Definition 1, accesses in Oy j can
be plausibly explained by accesses in Op;, 1 <14 < k. Ad-
ditionally, we apply a restriction to the PD game: both O 4,
and O, can generate sufficient public data to the device
that can trigger GC. This assumption is reasonable, as users
can warmup the device before writing hidden data securely
during the operating session as discussed in Section 3.1.

When b = 0, Op accesses the public volume V),
captured after the (k — 1)th round finished. MUTE allocates
a free flash page for the public data and generates random
1V s to encrypt it using the public key K. When the GC is
triggered by Oy 1, MUTE selects a flash block with the most
invalidated public data pages. Then, it migrates the valid
public pages to other free blocks by decrypting the encrypted
pages, re-generating new random IV's, and re-encrypting
the valid pages with the new IV s. For the public pages that
include hidden data, MUTE decodes the IV s of them to get
the hidden data using the ranking operation, re-encrypts the
hidden data to get a new rank value, and generates new I'V's
using the unranking function for migrated public pages.

When b = 1, Oy, operates both public and hidden data
on public V,, and hidden V}, volumes. MUTE triggers the GC
to write hidden data. Then, MUTE leverages the unranking
function to translate the hidden data into I'V's. To avoid the
erasure of hidden data, MUTE traverses the IVs of each
flash page in a selected flash block to identify the existence
of hidden data in the IVs of each flash page. For the detected
hidden data, MUTE re-encrypts it to alter its original data
content. This ensures the randomness of the IV generation,
consistent with the operation in public mode.

Lemma 1. After O,y in kth round, for the content of
snapshoted n public flash pages Ui {pg:}, it has pg; ¢
UZi{pgi} U UL, {pgi} and TVs; ¢ UIZ{IVs;} U
Ui 1tV si}, where 1 < j <n.

Proof. Lemma 1 fails if the adversary A can find an Oy
that results in duplicated public flash pages or duplicated

IVs. However, MUTE uses secure cryptography with the
secure parameter s, as defined in Section 3.3. The encrypted
hidden data, which serves as IVs for public data encryption,
exhibits a cryptographically-secure randomness, indistin-
guishable from the random number used to shuffle IVs in
public mode. Thus, the public data pages exhibit no repli-
cation. In addition, during GC, hidden data is re-encrypted
when moved to free pages. Thus, MUTE ensures that IVs
assigned to public data pages are not duplicated. O

Theorem 1. After Oy, the snapshot DS, has the data
layout U {addr;} with n public flash pages U?_,{pg;}.
Then, it can be replayed by applying Oy j, on the prior data
snapshot DSy, _1 which is generated by Og ;1 or Oy j_1.
Proof. Assume that Oy ;, contains the access pattern O, on
V,, writing \V,, public data pages. Under the restriction dis-
cussed in Section 3.3, O j, writes the same amount of public
data (i.e., ./\/p) as in Oy . If Oy contains no access to the
hidden volume V}, DS, can be easily replayed by choosing
Oo, = Op, which accesses only the public volume V), as
the access patterns of Oy . When O, ;, includes accesses to
V., O, can trigger GC to ensure that hidden data is cloaked
within the IVs of the migrated public data pages. Since the
fundamental GC logic of MUTE remains consistent in both
public and hidden modes, and only the public data written
affects the GC process, the adversary A can select O, as
Oy, to replicate the same GC behavior as in Oy ;. Based
on Lamma 1, A cannot identify the IV and data content
changes caused by hidden data operations. Thus, DS}, can
be plausibly explained by executing O . O

Theorem 1 demonstrates that, with MUTE, the execution
of 01 can always be plausibly explained by the accesses
in Op i, thereby satisfying Definition 1 as discussed in Sec-
tion 3.3. Thus, MUTE provides strong PD guarantees.

7. Implementation

We implement MUTE in FEMU [53], a prevalent SSD
emulator adopted by the system community for SSD-related
research [54], [79], [80], [43]. FEMU is built in QEMU [4],
a full-stack virtual machine. The emulated SSD contains
512GB flash memory with parameters detailed in Ap-
pendix B.1. We implement an FDE module using XTS-AES-
128 from the QEMU crypto library, performing encryption
and decryption operations before data is written to or read
from the flash memory. Thus, an IV of an encryption data
block is 16 bytes, and a flash page has 256 encryption blocks
corresponding to 256 IVs, where each IV consumes 1 Byte.
In addition, the TV and IVs of a flash page are stored in
its out-of-bound (OOB) area, which is 409 B, 10% of the
flash page [55]. Since the permutation’s arithmetic operation
involves the integer with hundreds of data bytes, we use
libGMP [5] for large integer calculation.

8. Evaluation

This section answers two research questions. RQ1: Does
MUTE provide sufficient performance? RQ2: How large is
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Figure 5: The bandwidth of Baseline,
PEARL, MDEFTL and MUTE when
testing FIO benchmarks.

the MUTE’s hidden volume? We address RQ1 in Section 8.2
by comparing the performance of MUTE with current SSDs
and PD schemes. Then, we characterize the capacity of
hidden volume in Section 8.3 to answer RQ?2.

8.1. Experimental Setup

We use an Intel Xeon E3-1245 v5 @ 3.50GHZ 8-core
processor with 64GB DRAM, while installed with Ubuntu
22.04.5 with kernel 5.13.4 as the host OS. Then, we build a
guest system VM for FEMU by allocating a S0GB QCOW2
image file and installing Ubuntu 18.04 along with kernel
4.15.0 on the VM; the guest system is allocated with 4GB
DRAM and four vCPUs.

Workloads. We evaluate MUTE using Flexible I/O Tester
(FIO) [3] and real-world workloads from Microsoft (MSR
[63]). FIO is a standard I/O benchmark for block-based
storage systems, while MSR workloads are collected from
server racks at Microsoft Research detailed in Appendix B.1.
Comparison Selection. We evaluate MUTE in three modes:
public-only (MUTE-PO), public-hidden (MUTE-PH), and
hidden (MUTE-H). Then, we use an unmodified FEMU
SSD with FDE as the baseline, maintaining identical SSD
parameters with MUTE. Additionally, we re-implemented
PEARL [29] and MDEFTL [45], which are state-of-the-art
PD schemes against multi-snapshot attacks. Further imple-
mentation details are provided in the Appendix B.2.

SSD Initialization. In public mode, experiments begin with
an empty SSD. However, both MUTE and PEARL require
sufficient public data written for the hidden mode. Thus, we
use an FIO sequential write workload to fill the SSD with
public data, ensuring GC can be triggered in hidden mode.

8.2. Performance and Lifetime Testing

Bandwidth of MUTE vs Baseline. We evaluate throughput
using FIO workloads: sequential write (SW), sequential
read (SR), random write (RW), and random read (RR),
each with a 4 KB request size. Figure 5 shows that the
average bandwidths of Baseline, MUTE-PO, MUTE-PH,
and MUTE-H are 181.5 MB/s, 180.3 MB/s, 180 MB/s, and
19.5 MB/s, respectively. In public mode, MUTE-PO and
MUTE-PH reduce bandwidth over the Baseline by 0.7%
and 0.9%. MUTE introduces small performance overhead,
as each write request only requires one unranking operation,
which is small relative to the flash access latency. In hidden
mode, MUTE-H significantly degrades the performance, as
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TABLE 1: Latency percentage of MUTE-H per operations.

Trace | FDE | PERM | FLASH | FTL

hm 0.5% 0.2% 93.9% 5.4%
prxy | 0.7% 0.2% 94.8% 42%
rsrch | 0.4% 0.1% 94.5% 5.0%
wdev | 0.5% 0.2% 92.9% 6.4%

MUTE writes hidden data during GC. Figure 6 shows the
latency under real-world workloads. MUTE-PO and MUTE-
PH increase the latency over the Baseline by 1.3% and
2%, whereas MUTE-H results in 9.6x increase in latency.
We further break down MUTE-H’s access latency, revealing
that its primary performance penalty (94% of total I/O
latency) stems from flash media access. A detailed latency
breakdown is provided in Appendix C.2.

While the throughput of MUTE in the hidden mode
drops significantly, MUTE still provides HDD-level band-
width for hidden data operation. For example, a Seagate
Barracuda HDD [2] offers 22.7 MB/s for 4 KB sequen-
tial write and 18 MB/s for 4KB sequential read, whereas
MUTE-H provides 23.4 MB/s and 15.7 MB/s, respectively,
outperforming HDD-based PD systems [25], [26], [68].
Bandwidth of MUTE vs PEARL and MDEFTL. In public
mode, Figure 5 shows that MUTE achieves 43%-124%
higher bandwidth than PEARL and MDEFTL. MUTE main-
tains normal I/O bandwidth in public mode, significantly
outperforming PEARL and MDEFTL. In hidden mode,
MUTE provides approximately 15% better write bandwidth
but reduces read bandwidth by 71%-92%. The better write
bandwidth of MUTE is due to avoiding PEARL’s time-
consuming WOM operations and MDEFTL’s extra dummy
writes, while the reduced read performance results from
MUTE’s ranking operations. As discussed in Section 3.1,
users access the hidden data within a secure “session”, indi-
cating a secure operation environment without time stress.
Thus, users have sufficient time to manage their hidden data,
making the reduced bandwidth acceptable. More discussion
about the hidden read overhead is provided in Appendix C.2.
In real-world workloads (Figure 6), MUTE decreases the
average latency over PEARL in the hidden mode by 12.5%
and increases it over MDEFTL by 15.3%. These results
show that MUTE offers comparable 1/O performance over
current flash-based PD solutions.

Latency Breakdown. We break down the access latency of
MUTE-H into specific SSD operations in Table 1, where
FDE indicates data encryption, PERM is the computational
overhead of permutation operations, FLASH is the latency
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for accessing flash memory, and FTL refers to other com-
putational overhead in the FTL. The primary performance
penalty of MUTE arises from flash media access, which
accounts for 94% of the total I/O latency on average. This
is because MUTE-H must trigger GC for hidden data writes,
and the associated data migrations and flash block erasure
significantly slow down hidden data operations.

Metadata Recovery Overhead. When switching the device
from public to hidden mode, MUTE needs to recover the
hidden data metadata (HBT). This process needs to read
the OOB area and perform permutation computations. Our
evaluation shows that reconstructing the HBT in DRAM
takes approximately 4.2 minutes, with 83 seconds on reading
the OOB area and 168 seconds on computational operations.
Lifetime Testing. The write amplification factor (WAF)
measures the ratio of internally written data to user-written
data, where a higher WAF indicates a shorter storage lifes-
pan. Figure 7 shows that MUTE does not impact storage
lifetime in public mode, whereas PEARL-P and MDEFTL-
P increase the WAF value significantly by 67% and 100%,
respectively. This is because MUTE does not modify the
GC logic of the FTL, while other schemes incur additional
writes. In hidden mode, MUTE-H incurs trivial lifetime
overhead with a 1% WAF increase over Baseline and
MDEFTL, whereas PEARL greatly increases the WAF value
by 74.4%. Since MUTE initiates GC without extra data
migrations, it imposes minimal overhead on storage lifetime.

8.3. Characterizing Hidden Volume Capacity

Assume the total capacity for the entire storage device
is C, the page size is P and the encryption block size is
b. The metadata size of a hidden batch is M which is a
constant. Then, a page has ¢ = % encryption blocks. Thus,
we can get the capacity of the hidden volume (in bits) V},
as follows based on the Stirling formula [72]:

C
Vn > 7 (logy(q) — ) M
where 7 = 2 + X which approaches to 2 when ¢ grows.
We show the full derivation in Appendix C.3.

When C' and b are constants, the hidden capacity ex-
pands logarithmically with respect to page size P. Figure 8§
shows the hidden capacity as a function of the page size
P when total capacity C' is 512 GB and M is 56 bits.
Our proof-of-concept implementation sets P to 4 KB. Thus,
MUTE provides 25.3GB hidden volume when b = 128,
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while 10.2 GB is provided when b = 256, comparable to 12
GB of PEARL and hundreds of megabytes of MDEFTL.
Page sizes typically vary from 4 KB to 16 KB [56] and
cannot be indefinitely enlarged. In this case, our MUTE im-
plementation can only provide 33.9 GB or 14.8 GB capacity
for the hidden data at maximum — P is 16 KB — when the
encryption block size b is 128 bits or 256 bits. To overcome
this limitation, a potential solution is to aggregate several
flash pages into a flash group for larger ¢ and subsequently
permute the IVs of encryption blocks within this group.

9. Discussion

Risk of randomized IVs. MUTE ensures PD by random-
izing the assignment of IVs to public data during FDE.
However, the traditional XTS-AES implementation gener-
ates IVs sequentially for a data unit. This could raise the
question: why does your device employ such an uncon-
ventional implementation? Such type of concern exists in
all current PD systems, as they often alter public data
layouts or use ad-hoc software that could signal the use
of PD strategies to adversaries. For example, current FDE
systems typically implement standard encryption by filling
the storage device with random data [22], [10], [26], [28],
[7]. This practice seems to contradict the conventional usage
of storage devices wherein users write only the necessary
data and reveal the PD presence. However, the sole presence
of a PD system cannot serve as evidence of the existence
of hidden data as discussed in Section 3. Thus, randomizing
IVs does not compromise the PD guarantee.

Secure crypto implementation. Public and hidden data are
encrypted before being written into the flash pages and IVs,
requiring a secure crypto implementation. MUTE employs
XTS-AES for encryption and ensures security by focusing
on two key aspects: (/) secure random number generation
(RNG) and (2) secure re-encryption of hidden data. RNG
is dedicated to producing TV and randomized IVs, which
are stored in the flash page’s OOB area. Typically, flash
memory RNGs use noise sources, such as thermal and
random telegraph noises in flash cells, to generate high-
quality random values [70]. Thus, MUTE leverages the
current secure RNG implementation for FDE. For (2), the
hidden data are encrypted with the new TV to generate
different IVs after its relocation during GC. This obfuscates
discernible evidence of hidden data existence as it has the
identical pattern of the IV generation in public mode.

IV collisions. The IVs within a flash page do not have
collisions, as they are permuted using incremental integers.
In addition, the permutation of IVs is created by unranking
the cryptographically secure random data encrypted hidden
data. Since MUTE leverages XTS-AES, which is IND-CPA,
with a cryptographically secure implementation to encrypt
hidden data, the generated permutations have no collision.
Thus, IV collisions do not occur in MUTE.

DoS attacks. MUTE creates a public-only mode as a decoy
for adversaries. Upon coercion, users disclose only the
public key, granting adversaries access to public-only mode
and denying the existence of hidden data. When adversaries



solely capture snapshots of the raw data without initiating
writes, GC is unlikely to occur, thereby preventing hidden
data loss. However, adversaries might execute a denial of
service (DoS) attack [29] by overwhelming the device with
excessive data writes. Since operating hidden data in the
presence of adversaries could reveal its existence, a secure
PD system must make the device completely unaware of
hidden data under such conditions. Thus, the DoS attack
can erase all data from the storage, yet they do not reveal
the presence of hidden data, thereby preserving user safety.
Current PD methods [67], [44], [29], [45], [25], [26], [28],
including MUTE, primarily consider protecting the denia-
bility of hidden data without a solution to defend against
DoS attack. We leave this as a promising direction in our
future work.

Hidden data loss risk. Previous PD systems write hidden
data directly into flash pages, occupying the space of public
data. This decreases usability, as normal public data oper-
ations from legitimate users can inadvertently erase hidden
data. A potential remedy is to restrict the available storage
capacity in public mode. However, this creates a noticeable
discrepancy between the actual and available storage capac-
ities, alerting adversaries. In contrast, MUTE requires users
to switch to public-hidden mode when accessing public data.
By embedding hidden data within the permutation of IVs,
it avoids using extra storage space for hidden data. Even
if users fill the storage with public data, the hidden data
remains intact without being overwritten.

Performance side channel. MUTE reduces SSD perfor-
mance in the hidden mode. However, adversaries cannot use
this to infer the hidden data, as they lack access to the device
during hidden mode operations, as discussed in Section 3.

Amount of public data written. MUTE requires users to
write sufficient public data to accommodate hidden data as
discussed in Section 5.6. Moreover, the public data volume
should be sufficient to nearly trigger GC; otherwise, adver-
saries may become suspicious if GC occurs on a storage
device with minimal public data. In our implementation
aligned with FEMU [53], GC initiates when 95% of storage
space is utilized and stops when usage drops below 75%. In
MUTE, users must write at least 75% of the device’s total
storage capacity with public data. Note that this threshold for
public data may vary across different FTL implementations.
Unexpected Session Termination. If a private session is
interrupted accidently (e.g., power loss), data (e.g., hidden
data’s metadata) in DRAM may be at risk. However, modern
SSDs are typically equipped with power loss prevention
(PLP) by employing a capacitor- [69] or battery-backed [49]
DRAM. The data in the DRAM can be securely written back
to flash memory upon an accidental event.

TEE-based PD Systems. Recent PD solutions [58], [31],
[57] leverage trusted execution environments (TEEs) to se-
curely implement plausible deniability and prevent reverse
engineering the executable files containing the PD logic.
However, these works overlook the suspicious data layout
patterns on flash memory resulting from PD operations.
Thus, adversaries capable of inspecting raw flash layouts can
still employ a DL attack and compromise the PD guarantees
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provided by TEE-based solutions.

10. Related Work

Steganographic File System. Previous works [22], [59],
[22], [66] incorporate data hiding into a file system, obfus-
cating the hidden data storage. For instance, Han et al. [39]
introduce DRSteg to provide files’ plausible deniability in a
multi-user computing environment. However, these methods
only apply to traditional HDDs. With the arise of flash mem-
ory, these methodologies become vulnerable to adversaries
who can perform off-the-shelf analysis on flash chips.
Plausibly Deniable Block Storage. FDE tools like True-
Crypt [6], VeraCrypt [7], and Rubberhose [10] provide PD
guarantees at the host OS but are vulnerable to multi-
snapshot adversaries. HIVE [25] was introduced to coun-
teract multi-snapshot attacks through write-only Oblivious
RAM (ORAM). Change et al. developed MobiCeal [28] to
avoid the poor performance of ORAM-based solutions [25],
[26] via dummy writes. Nonetheless, it fails to account
for the unique property of flash memory, compromising
its PD guarantees. INVISILINE [68] proposed an invisible
PD by embedding hidden data within the metadata of dm-
crypt [17]. However, it assumes using traditional HDDs and
is incompatible with flash memory. Moreover, INVISILINE
results in impractical storage capacities for hidden data. Fur-
ther details on INVISILINE are provided in Appendix A.3.
Plausibly Deniable Flash-based Storage. Multiple PD
systems were proposed for flash memory. DEFY [67] pro-
posed a PD system on YAFFS, allowing users to deny the
hidden data existence. Jia et al. [44] identified suspicious
data distribution and proposed DEFTL to ensure a strong
PD guarantee. However, neither DEFY nor DEFTL can
defend against the multi-snapshot adversary. Thus, Chen et
al. proposed PEARL [29] against multi-snapshot attackers
by leveraging the WOM coding to ensure a strong PD guar-
antee. INFUSE [30] hides sensitive data by manipulating
the voltage threshold of flash cells. MDEFTL [45] and
FSPDE [58] are methods that conceal hidden data within
dummy writes, which are generated during regular write
operations. However, these solutions occupy explicit storage
space for hidden data and remain vulnerable to DL attacks.

11. Conclusion

This paper identifies that the data layout on flash mem-
ory can lead to the compromise of PD guarantees. To
counteract this threat, we propose MUTE to provide strong
PD protection for the hidden data, ensuring the privacy
and safety of users. Our proof-of-concept evaluation shows
that MUTE assures PD protection while providing sufficient
throughput and capacity for hidden data operations.
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Appendix A.
Additional PD Proofs and Discussions

A.1. Compromising Single-snapshot PD

Current flash-based single-snapshot PD systems [44],
[67] ensure plausible deniability by acting the hidden data as
random bits. However, they are vulnerable to the DL attack.

Theorem 2. Current single-snapshot PD systems for flash
memory are vulnerable, as they leave distinguishable* pat-
terns within the data layout generated by Oy and O ;.

Proof. The PD game runs for one round (steps 3 to 5)
for a single-snapshot adversary. For example, DEFY [67]
allocates flash pages for the incoming data using the inherent
channel-first method. When b = 0, the accesses in Og ;
write public data in V,,, generating a <public, random> data
layout. When b = 1, the accesses in 1 ; contain both public
and hidden writes to V, and V. However, DEFY adopts
the original page allocation algorithm consistent with the
method when accessing V,. This can lead to a <public,
hidden, public> data layout, incurred by access patterns
01,1 =< 0y, 0, 0, >, where O, and O,, are accesses of
public data, and O}, accesses hidden data. Since challenger
C only reveals the public password, A interprets the hidden
data as random, observing a <public, random, public> data
layout, which is distinguishable from the <public, random>
layout generated by Oy ;.

Another example is DEFTL [44], which proposes a new
flash page allocation by creating a flash block pool that
contains all free blocks, which have a continuous data layout
in flash memory. Then, DEFTL assigns the head blocks
for the public data and the tail blocks for the hidden data.
When b = 1, O;; might contain accesses ), including
hidden writes. However, O), can overwrite the hidden data.
When the free space is insufficient, DEFTL triggers GC
to reclaim invalidated flash pages, which are placed in the
head of the flash block pool. Assume O, ; contain accesses
< Op, Op, O, >, Oy, incurs GC, and the reclaimed invali-
dated hidden blocks are inserted into the head of flash block
pool. Then, O;, can generate an inexplicable data layout.
Some written writes might be serviced by the flash blocks
that were reclaimed from the hidden data, while other public
data are assigned with the original free blocks. Thus, it
generates a <public, random, public> data layout that is not
consistent with the <public, random> data layout of O ;.

Based on Definition 1, these methods lose the PD game
as they have discernible access patterns in Op; and Oq ;.

O

A.2. Compromising Multi-snapshot PD

Current flash-based PD systems [30], [58], [29], [45]
designed against multi-snapshot attacks rely on special en-

4. Distinguishable evidence indicates that it contains a data layout gen-
erated by O 1 that cannot be explained by operations in Qg 1. Thus,
|Pr(b’ = b) — Pr(b # b)| > negl(s).
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coding or dummy write methods to hide sensitive data. We
verify their PD guarantees via the following proof.

Theorem 3. For current multi-snapshot PD systems in flash
memory, access sets Og 1 and Oy 1 can generate distinguish-
able data layouts, breaking their PD guarantees.

Proof. Considering multi-snapshot adversaries, the PD
game runs for r rounds. When b = 0, the access set Og j, in
round k£ (1 < k£ < r) operates public data in V,. When b = 1,
O i, is performed on both V, and V},. Both INFUSE [30]
and PEARL [29] encode the hidden data within the public
data. However, the adversary A can compromise them by
leveraging the semantic-aware layout exploitation to make
O, 1, distinguishable from Og . The hidden data written
alters the storage state of the original public data on flash
memory. However, it might select the cold public data,
which are associated with cold files and are unlikely to
be modified. Reprogramming cold public data for hidden
written raises suspicious data layout, as they should never
be invalidated or updated. Thus, encoding-based methods
cannot ensure PD guarantees.

MDEFTL [45] and FSPDE [58] hide the data via dummy
writes. In round %k, O, j writes both public and hidden data.
In round k£ + 1, Oy 41 contains accesses O, to public
data, which trigger GC. However, during GC, a flash block
containing valid hidden data may be selected, requiring the
relocation of it to prevent its erasure. Thus, multi-snapshot
adversaries can identify the relocation of “random data”
(hidden data). Since random data are generated as dummy
writes reclaimed during GC, the relocation of random data
leads to observable data layout changes of O j41. Thus,
they cannot ensure plausible deniability. [

A.3. Analyzing other PD Systems

Analysis of INVISILINE. INVISILINE is designed for
HDD-based storage device without considering the unique
characteristics of flash memory. INVISILINE requires users
to write sufficient public data to the storage device before
storing hidden data, then reads the public data, encrypts it
using a tweak value (TV) derived from the hidden data, and
overwrites the original public data with the encrypted ver-
sion. However, since flash memory uses out-of-place writes,
the original public data remains accessible. An adversary
can thus detect duplicated public data by examining the raw
flash contents and undermine INVISILINE’s PD guarantees.

INVISILINE modified the encryption module of the dm-
crypt in the OS by correlating each encryption unit to its
encryption metadata, which is represented by the hidden
data. Given that the size of this encryption metadata is
16 bytes [68], each encryption unit can be associated with
16 bytes of hidden data. In the OS, the encryption unit
matches the size of the OS-level data block, which is 512
bytes, whereas a data unit typically aligns with the page size
in flash memory. When integrating INVISILINE into flash
memory, it can only provide a hidden capacity of 2 GB or
0.5 GB if the page size is 4 KB or 16 KB, respectively.
This hidden capacity is insufficient for the hidden data and



TABLE 2: Parameters of the implemented SSD.

Parameters Value | Parameters | Value
SSD Capacity | 512GB Channels 4
Page Size 4KB OOB Area 409B
Pages/Block 256 OOB Read | 0.02ms
Blocks/Plane 16384 Page Read | 0.04ms
Planes/Chip 1 Page Write 0.2ms
Chips/Channel 8 Block Erase 2ms

TABLE 3: The characteristics of MSR workloads.

Workload | Write Ratio | Avg. Req. Size
hm 73.7% 8.3KB
prxy 96.9% 2.5KB
rsrch 90.7% 8.7KB
wdev 79.9% 9.4KB

is significantly smaller than that of current PD systems [67],
[44], [29], [45]. In contrast, MUTE can provide 25.3 GB or
33.9 GB of hidden capacity, outperforming INVISILINE by
12.7x or 67.8x, under the same conditions.

Applying DL Attacks to Other PD Systems. In Section 4,
we only analyzed the PD systems specifically designed
for flash memory [44], [58], [67], [29], [45], [30] because
they introduce distinct data processing patterns and layouts
tailored for flash memory. Other PD methods [27], [28],
[32], [36], [74], [77] either use flash memory as a standard
block device — ignoring its unique physical properties — or
do not offer new approaches to hidden data storage beyond
those already analyzed. Consequently, these methods also
remain susceptible to the DL attack.

A.4. MUTE Depolyment Considerations

Password selection. The public and hidden keys are derived
from the public and hidden passwords. The compromise of
passwords can lead to the failure of the PD guarantee as
they can be used to uncover hidden data. Thus, we assume
the use of robust passwords, such as randomly-generated
high-entropy passwords [48] and security keys [8].
Firmware integration. Integrating MUTE into the firmware
of current SSDs is practical. With a bandwidth degradation
of only 0.9% at maximum in public mode, the degradation is
minimal and will not hinder its adoption. Moreover, MUTE
can be incorporated into current SSDs through firmware
updates, which is standard practice for maintaining modern
SSDs [20], [19].

Appendix B.
Implementation and Evaluation Details

B.1. SSD Parameters and MSR Traces

The detailed SSD parameters are listed in Table 2.
Moreover, we show the details of evaluated MSR traces
in Table 3.
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Figure 9: The bandwidth of
SSD-NoFDE and MUTE.

Figure 10: The average la-
tency of SSD-NoFDE and
MUTE.

B.2. Implementation Details of PEARL and

MDEFTL

We re-implemented PEARL [29] and MDEFTL [45]
in FEMU using the same SSD parameters as MUTE, as
described in Table 2. Since their source code is not publicly
available, we followed the designs outlined in their papers.
PEARL Implementation. We adopt WOM (3,5), encoding
3 bits of original data into 5 bits of WOM codewords,
consistent with the PEARL’s implementation. Then, we
implement WOM functions and embed them into flash mem-
ory operations, similar to prior WOM works in flash-based
SSDs [43]. In public mode, I/O requests are handled nor-
mally as operated by regular WOM SSDs. To write hidden
data, our implementation forces GC to migrate valid public
data while cloaking the hidden data within the migrated
public data, consistent with PEARL’s approach. For hidden
read operations, each 5-bit read data is decoded using the
WOM codeword mapping to retrieve the hidden data.
MDEFTL Implementation. We implement a DW-1 set-
ting in our MDEFTL implementation, which performs one
dummy write for each write request. This setting ensures
the best performance of MDEFTL as described in its paper
for a fair comparison. In addition, MDEFTL adopts a ran-
dom block allocation method, by randomly selecting a free
flash block for the incoming data instead of the traditional
page-level channel-first allocation used in FEMU. Thus,
we implement the page allocation used by MDEFTL into
FEMU to make it align with MDEFTL’s implementation.
When writing public data, a dummy write is attached to
each write request, whereas hidden writes proceed without
dummy writes, consistent with MDEFTL’s design.

Appendix C.
Additional Experimental Results

C.1. Performance Comparison of SSD-NoFDE and
MUTE

We also evaluate the performance of the baseline SSD
without equipping FDE (SSD-NoFDE). In public mode,
Figure 9 indicates that MUTE-PO and MUTE-PH introduce
bandwidth degradation over SSD-NoFDE by 18.2% on av-
erage. Additionally, Figure 10 shows that MUTE-PO and
MUTE-PH increase the average latency over SSD-NoFDE
by 4.1% and 4.8%, respectively. The root cause of this
performance degradation is that the encryption operations



TABLE 4: Symbols

Symbol Meaning Where
Vo Public volumes Section 3.3
Vi Hidden volumes Section 3.3
Pp Password for public data Section 3.3
Ph Password for hidden data Section 3.3
N Total number of pages in storage device  Section 3.3
U‘[il{pgh} A set of physical flash pages Section 3.3
add; Physical address Section 3.3
U{‘;l {add;} A set of physical addresses Section 3.3
F=Af1,f2s--, fx} A set of files Section 3.3
B Logical data block Section 3.3
A Adversary Section 3.3
C Challenger Section 3.3
O =< 01,02,...,0n, > A sequence of write accesses Section 3.3
b Random bit Section 3.3
negl(s) Negligible function Section 3.3
Pr() Probability Section 3.3
s Security parameter Section 3.3
Oy Accesses the hidden data Section A.1
» Accesses the public data Section A.1
S={0,1,...,n—1} Integer set of n samples Section 5.1
T Permutation Section 5.1
rank() Rank of permutation Section 5.1
v Numeric ranking value Section 5.1
Npg Number of public data pages Section 5.2
Ny, Number of hidden data pages Section 5.2
PG Public data page Section 5.2
P Page size Section 8.3
C Total capacity of device Section 8.3
b Encryption block size Section 8.3
M Metadata size of a hidden batch Section 8.3
q Number of encryption blocks per page Section 8.3

of FDE in MUTE are located in the I/O critical path
whereas SSD-NoFDE does not include FDE. In hidden
mode, MUTE-H decreases 91.1% bandwidth over SSD-FDE
and introduces 9.8x of the SSD-FDE latency. This degrada-
tion is mainly due to the GC operations triggered by MUTE-
H when writing hidden data, as discussed in Section 8.2.

C.2. Hidden Read Performance Degradation

MUTE exhibits lower read bandwidth for hidden data
compared to PEARL and MDEFTL. However, this does
not impede the normal operation of the PD system in real-
world scenarios. As discussed in Section 3.2, users access
their hidden volumes within secure environments without
time stress rather than in high-risk situations. Therefore,
the reduced read bandwidth is acceptable, as users have
sufficient time to manage their hidden data.

Current PD research prioritizes robust plausible denia-
bility guarantees over high I/O performance. For example,
PEARL provides only 10%—-20% of a regular SSD’s band-
width for hidden data, and HIVE achieves just 0.99 MB/s
read bandwidth, reducing the storage device’s throughput
by over 99%. Despite these limitations, such methods are
still adopted as PD is a special use case that emphasizes
security over performance. Since MUTE achieves HDD-
level read throughput (discussed in Section 8.2), it offers
practical performance for hidden data operations.

C.3. Capacity Mathematical Analysis Supplement

The capacity of hidden data in a flash page (in bits) is
based on permutations of encryption blocks, which in our
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case is |log,(q!)] — M. Then, the capacity of the hidden
volume (in bits) V), is:

Vi = 5 - (lloga(a)] — M)

Since the hidden volume (V}) depends on the factorial of
the number of encryption blocks per page (¢ = %), we
determine its lower bound using the Stirling formula [72]:

vz 5 ((lomate ()]~ ar)
According to Stirling’s formula, we have:
Viz & (f1ogale- (9| - M)

Then simplify it, we can get:

(@)

vz & (|1osate) + atomy(D)] ~ A1) >
% (1 +q(logy(q) —2) — M) >
= - (alloga(g) ~2) ~ M) >

)

% : (logz(q) -2+

Then we can get Equation 1:

==

Vi, > % - (loga(q) —n)

where n =2 + % which approaches to 2 when ¢ grows.

Appendix D.
Symbol Table

We summarize the symbols we used in Table 4.
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