
Enabling Secure and Efficient Data Loss Preventionwith a
Retention-aware Versioning SSD

Weidong Zhu

Florida International

University

Miami, Florida, USA

weizhu@fiu.edu

Carson Stillman

University of Florida

Gainesville, Florida, USA

carson.stillman@ufl.edu

Sara Rampazzi

University of Florida

Gainesville, Florida, USA

srampazzi@ufl.edu

Kevin R. B. Butler

University of Florida

Gainesville, Florida, USA

butler@ufl.edu

Abstract
Cyberattacks resulting in data loss remain a critical concern in mod-

ern data protection. To mitigate such threats, data versioning has

been introduced to recover compromised data by reverting the stor-

age to a prior uncompromised state. However, most current ver-

sioning solutions are implemented at the host level (e.g., within the

operating system), making them vulnerable to adversaries with es-

calated privileges who can compromise OS-level protections. Thus,

device-level methods have been proposed to shift the versioning

logic to hardware-isolated storage devices outside the untrusted OS.

Unfortunately, these solutions suffer from limited retention times

for historical data, narrowing the protection window and leaving

systems exposed to persistent attacks. In this paper, we propose

LAST, an invaLidation-Aware VerSioning sysTem for flash-based

SSDs, that enables data versioning with enhanced awareness of data

retention time, ensuring long-termavailability of historical datawith

small performance impact. LASTmodifies the SSD’s flash translation

layer (FTL) to retain the data invalidation order for tracking data

retention time. Then, it leverages an ordered garbage collection (GC)

that always reclaims versioned data with the longest retention time,

as determinedby the invalidation sequence. Therefore, this approach

prevents the premature deletion of data with shorter retention, sig-

nificantly extending the protection window and reducing the risk

of data loss. Evaluated under various real-world workloads, LAST

achieves a small latency overhead of 1.5% over a regular SSD while

maintaining data history for up to 126.4 days with an average of 52.6

days. This significantly outperforms the average retention of current

versioning methods by 61.4% at least and 165.9% at most, enhancing

the protection window against data loss from cyberattacks.

CCS Concepts
• Security and privacy→Malware and itsmitigation; Systems
security; •Computer systems organization→ Secondary stor-
age organization.

Keywords
Malicious Attacks, Data Loss Prevention, Data Versioning, Flash-

based SSDs

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’25, October 13–17, 2025, Taipei
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765135

ACMReference Format:
Weidong Zhu, Carson Stillman, Sara Rampazzi, and Kevin R. B. Butler. 2025.

Enabling Secure and Efficient Data Loss Prevention with a Retention-aware

Versioning SSD. In Proceedings of the 2025 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’25), October 13–17, 2025, Taipei.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3765135

1 Introduction
Modern computer systems suffer frommalicious attacks resulting

in data loss or downtime, causing significant financial and oper-

ational disruption. For example, the 2021 ransomware attack on

Colonial Pipeline encrypted essential systems, shutting down fuel

delivery for days and leading to a severe gas shortage on the U.S.

East Coast [39]. Beyond external attacks, malicious insiders with

authorized access pose equally severe risks, causing catastrophic

damage to data integrity, finances, and corporate reputation [29].

To combat these threats, various techniques, such as backups [35],

process checkpoints [28], and snapshots [6, 87], have been widely

used to preserve the previous storage state to recover the system

from potential data corruptions. However, these techniques capture

historical data only at discrete intervals, leaving gaps between snap-

shots. In contrast, a versioning system offering Continuous Data

Protection (CDP) retains unlimited versions of data, allowing the

storage to revert to any past state. This is particularly critical when

facing adversaries who can corrupt data unpredictably at any time,

as traditional methods may only capture snapshots of data after the

compromise has occurred. Thus, we focus on CDP to protect users’

data, consistent with prior versioning works [46, 59, 86, 96, 100].

An effective versioning systemmust address three critical aspects

to ensure robust data protection:

(1) Rootkit Resistance. Recent attacks [45, 79, 86] have shown
how retained data versions can be compromised by system breaches

with privilege escalation. With these escalated privileges, attackers

can disable the data protection processes andmanipulate victim data.

Therefore, a trustworthy versioning system should be enabled to

defend against rootkit-level data corruptions.

(2) Long Retention for Historical Data. Providing long re-

tention of historical data is desired by current versioning sys-

tems [15, 45, 79, 86, 96]. It guarantees data availability for remediat-

ing potential data compromise. For instance, advanced ransomware

presents detection challenges due to its ability to mimic legitimate

applications [103], indicating that the versioning system should pro-

vide longer data retention for the prolonged detection time. More-

over, some cyber attacks [102] can remain hidden in the victim’s

system for extended periods, even for months [73], before being

https://doi.org/10.1145/3719027.3765135
https://doi.org/10.1145/3719027.3765135

CCS ’25, October 13–17, 2025, Taipei Weidong Zhu, Carson Stillman, Sara Rampazzi, and Kevin R. B. Butler

detected. Thus, data breaches may have occurred in the distant past,

and providing long data retention can mitigate this threat.

(3) Intact Historical Files. Since computer data is typically

stored in file form, it is crucial to ensure the completeness and in-

tegrity of versioned files. Partial loss or early deletion of historical

files – called “shattered files” — can render recovered files unusable.

For example, losing just the header information of a historical PDF

file can make the entire file unusable.

Current versioning systems fall short in addressing these require-

ments, limiting their effectiveness in preventing data loss. Many

current versioning approaches are employed in the host OS, called

host-level methods [67, 76, 100]. However, the host system contains

a large trusted computing base (TCB), leaving a large attack sur-

face and making it vulnerable to privilege escalation vulnerabilities.

In 2023 alone, 5870 vulnerabilities involving privilege escalation

were reported (CVE-assigned) [14], highlighting significant risks for

host-level solutions.

To remedy these limitations, others have proposed device-level

versioning [46, 96] to provide a robust defense against OS compro-

mise. These approaches are implemented within storage devices,

isolated from the potentially compromised OS by limited interfaces.

Flash-based SSDs are among the most popular storage devices used

by existing device-level solutions both because of their prevalence

and the fact they perform out-of-place writes rather than directly

overwriting data on the medium, providing an inherent versioning

functionality [96]. When data is written to the SSD, device-level

approaches retain it until the storage space is insufficient to serve

newwrites, and garbage collection is triggered.

Despite the improvement, existing device-level approaches still

suffer from critical limitations:

(1) Degraded Data Retention.While data versioning aims to

maintain all the historical data in the device, the limited storage

capacity indicates that the versioning systemmust reclaim the his-

torical data periodically to release the storage space for future data

operations.Without carefully selectingwhichhistorical data to erase,

these methods can prematurely delete data that could be crucial for

recovery. For example, reclaiming a historical data page with a short

retention time degrades the protection of historical data when there

is a historical data with longer retention time existed. While current

versioning SSDs [79, 96] recognize this threat, they cannot track the

complete retention timeorderofdataversions.This limitation results

in the early deletion of versioned data and a diminished capability

to recover the system following a data breach.

(2) IncompleteHistoricalFiles.Storagedevices lackknowledge
of file-level relationships between the data arrived at the storage and

files because they operate at the block level. Moreover, “removed”

but versioned data in files are typically generated in continuous

time [37, 48] due to spatial locality,which indicates that data adjacent

to a recently accessed address will likely be accessed shortly. Since

existing versioning SSDs [46, 79, 96] cannot be fully aware of the

data retention sequence, they can occasionally erase portions of a

versioned file early, leading to shattered files.

(3)Data Loss Due to Architectural Defects. The DRAM data

cache has been widely used in modern SSDs [18, 54, 88] to absorb

I/O requests for high performance. However, the data cache in the

SSD can cause the loss of data versions because a write hit to the

data cache can overwrite data that has been recently cached but not
yet written to storage.

To address these limitations, we propose LAST, a secure and

efficient SSD-based versioning approach. The core idea behind LAST

is simple but effective:whenhistorical data reclamation is required, it

always deletes data versionswith the longest retention duration first.

To achieve this target, LAST distinguishes between newly written

data (first-time) and the data (overwriting) that overwrites existing
data, storing each type separately in the storagebasedon their arrival

times. Since the retention time of versioned data depends on when

data is invalidated andwhen it is truly deleted fromstorage, the order

inwhich overwriting data is stored reflects the invalidation sequence

and thereby represents the retention time.Therefore, LAST leverages

the order-maintained overwriting data to select the historical data

with the longest retention time during the reclamation.

LAST also avoids data loss in the DRAM data cache due to the

cache hit. Unlike the traditional overwrite-upon-hit cachingmethod,

LAST disables the in-place update operations in the data cache and

stores the incoming data in an out-of-place manner. This ensures

that the historical data cannot be deleted or overwritten in the cache.

Additionally, since maintaining the historical data introduces addi-

tional storage overhead, LAST further introduces the deduplication

technique to effectively remove the duplicated data copies in the

storage, improving storage efficiency.

With these enhancements, LAST offers significant advantages

over existing methods: (1) It maximizes the retention of historical

data because the recently deleted versioned data can be preserved

longer, avoiding premature removal. (2)Due to spatial locality, file-
related historical data is typically generated consecutively. LAST

reclaims file data based on its original invalidation order, ensuring

files remain intact and avoiding shattered files. (3) LAST’s cache
design prevents accidental version loss inherent to conventional

DRAM caching techniques.

Our evaluation demonstrates that LAST significantly improves

historical data retention, outperforming existing device-level solu-

tions by 61.4% atminimum and 165.9% atmaximum. This substantial

improvement in retention is essential for effective recovery from so-

phisticated, long-hidden cyberattacks. In summary, this workmakes

the following contributions:

• We perform an in-depth analysis of data versioning in SSDs

equipped with DRAM cache and characterize data retention in exist-

ing versioning SSDs to give evidence of why they are insufficient in

preserving data versions.

•We propose LAST to protect the versioning system from OS

compromises. It enables versioning data in the cache with a trivial

overhead of 1.5% compared to a regular SSD.

•We provide ordered versioning with LAST that leverages data

invalidation sequences to avoid shattered files and achieve long

retention time, outperforming existing versioning SSDs by 61.4% at

minimum and 165.9% at maximum.

•We implement a prototype of LAST in an SSD emulator [61].

Our evaluation demonstrates that LAST can improve data versions’

availability with minimal performance degradation compared to

existing versioning SSDmethods.

Enabling Secure and Efficient Data Loss Prevention with a Retention-aware Versioning SSD CCS ’25, October 13–17, 2025, Taipei

2 Case Study of Data Loss
In this section, we explore critical attack scenarios that can lead to

data loss. Building on these scenarios, we identify key insights that

highlight essential factors for effective data loss prevention.

2.1 Encryption Ransomware
Ransomware is a high-profile malware that encrypts user files until

a ransom is paid. These attacks can disrupt critical services across

government agencies, businesses, and individual consumers. Even

worse, ransomware has a low entry barrier for attackers. In 2024, the

number of ransomware victims worldwide rose by 15% compared

to the previous year [34], while global ransom payments increased

by 35% [92]. Although traditional ransomware typically follows a

straightforward pattern of file access and encryption, recent variants

have shown increasingly sophisticated patterns:

(1) Recent research [27, 45, 94] demonstrates that some ran-

somwareattacks canoperate at the rootkit level, undermining typical

detection and backup strategies. They can disable existing defense

mechanisms or bypass detection entirely. For example, with esca-

lated privileges, it might read or modify data directly on the device

rather than interact with files [105]. As most existing solutions rely

on file access behavior to identify threats [51, 52, 83], this approach

circumvents detection even if the ransomware does not disable the

operating system’s defenses.

(2) Attackers can also adapt ransomware to outmaneuver spe-

cific defenses. For example, a common detection technique focuses

on changes in data entropy, as encryption raises the randomness

of file contents. However, emerging ransomware variants, such as

CHAOS [72], exploit encoding methods (e.g., Base64) to lower en-

tropy, making it harder for existing mechanisms to identify ran-

somware activity and prolonging the attack time before discovery.

Takeaway. Considering advanced ransomware that can operate at

the rootkit level and adapt to evade detection, immediate detection

and termination are not guaranteed. Therefore, an effective defense

strategy must include a robust data recovery mechanism and store

historical data for as long as possible to facilitate data recovery if an

attack happens.

2.2 WiperMalware
Unlike ransomware attacks, wiper malware is designed purely for

destruction rather than seeking financial reward. Attackers often

remain silent until the compromised system fails, causing severe

operational disruptions. For instance, in 2022, Russian-based groups

performed wiper attacks on Ukrainian government systems, inter-

rupting critical infrastructure and business activities. Unlike many

destructive cyberattacks, wiper attacks have distinctive characteris-

tics:

(1) Since these attacks aim solely to destroy data, they frequently

targethigh-value systemswhose compromisehas significant societal

or national security consequences.

(2)Wiper attacks tend to be large in scale and highly coordinated,

often initiated by governments or large cybercriminal organizations,

such as the NotPetya malware [77] and IranWiper [71].

Takeaway.Wiper attacks pose a severe threat to critical infrastruc-

tures and organizations where data availability is critical. Once the

attack is activated, it can erase data immediately. Defending against

such attacks relies heavily on effective data recovery, making com-

prehensive versioning essential. Therefore, maintaining historical

data provides the foundation for robust data loss prevention.

2.3 Insider Threats
While malware is the primary cause of data loss, malicious insid-

ers with legitimate system access can lead to significant negative

outcomes as well. Moreover, such attacks are especially difficult to

counteract for the following reasons:

(1)Since insiders are typically trustedusers, itmay takea long time

to discover such intentional data corruption. For example, a former

IT employee ofNCS conducted an insider attack for 2.5 years, wiping

180virtual servers and causing $678,000 infinancial losses.Moreover,

organizations could only realize they have been compromised after

substantial damage has already been done.

(2) Insiders typically possess extensive knowledge of the system
withy high-level privileges. They can easily bypass security controls

and blend malicious actions with normal activities. Consequently,

insider-induced data loss is more difficult to detect.

Takeaway.Although insider threats are less common thanmalware,

they pose a severe challenge for data loss prevention. Insider threats

can remain hidden in a system for extended periods, and insiders’

elevated privileges allow them to evade many host-level defenses.

As with rootkit-level attacks, it is crucial to preserve historical data

for possible data recovery while ensuring strong isolation measures

that prevent unauthorized access to defense mechanisms.

2.4 Learned Lessons
Real-world attack scenarios underscore the urgency of designing

robust and secure data loss prevention strategies that provide the

following guarantees. (1)All historical data should be retained, as at-
tacks can corrupt any part of data at any point in time. This approach

maximizes the availability of historical data for potential recovery.

(2) The protection system itself should be isolated from vulnerable

modules in the host environment to avoid being compromised. (3)
Since some threats can persist for a long period of time, historical

data must be kept as long as possible to support recovery even long

after an initial attack.

Based on these observations, this paper proposes a solution that

maximizes historical data retention and defends against advanced

attacks—including those with rootkit-level privileges, thereby pro-

viding robust data loss prevention.

3 Flash-based SSDs
This section provides necessary background information on flash-

based SSDs.

Overview. Flash-based SSDs are replacing traditional hard disk

drives (HDDs) for their high performance and energy efficiency [44].

Flash memory operates write and read requests at page granularity

(e.g., 4KB). These pages are grouped into a flash block. Since flash

memory erases data at block granularity, it performs overwrites

in an out-of-place manner. When the ratio of free pages reaches a

threshold (e.g., 20%), garbage collection (GC) employed in the flash

translation layer (FTL) reclaims invalidated data by migrating valid

pages to other free blocks and erasing them. Since flash memory has

limited program/erase cycles [55], FTL includes wear-leveling and

bad block management to improve the SSD’s lifetime.

CCS ’25, October 13–17, 2025, Taipei Weidong Zhu, Carson Stillman, Sara Rampazzi, and Kevin R. B. Butler

0 250 500 750 1000

0

0.5

1

Erased Flash Page

R
D
F

Baseline BVSSD TimeSSD LAST

Figure 1: Retention Drop Factor (RDF) of erased pages when
testing a randomwriteworkload of FIO. LAST reaches optimal
retention time compared to existing versioning SSDs.

0 250 500 750 1000

0%

50%

100%

Deleted File

V
e
r
s
i
o
n
e
d
R
a
t
i
o

Baseline BVSSD TimeSSD LAST

Figure 2: Retained version ratio of deleted files after a random
write. LAST reaches 100% ratio compared to the Baseline SSD
and current versioning SSDs (BVSSD and TimeSSD).

FlashMemory Data Layout. Flash-based SSDs are structured for
high parallelism. They use bus channels to connect multiple flash

chips that process I/Os independently. Each chip contains flash dies,

offeringdie-level parallelism, and eachdie consists of planesmadeup

of blocks. Finally, planes, the lowest level of parallelism in SSDs, can

process I/Os simultaneously when requests target the same address.

Address Translation.Address translation interprets logical page
addresses (LPAs) derived from logical block addresses (LBAs)in the

OS to physical page addresses (PPAs) in flash memory using a map-

ping table [42, 48]. Page-level mapping has beenwidely used in light

of its high performance [42, 74]. However, DRAM has a limited ca-

pacity – typically 0.1% [63] of flash memory – and it cannot house

the entire mapping table. Thus, FTL uses a cached mapping table

(CMT) to store those “hot” mapping entries in the DRAM, while the

complete table is maintained in flash memory’s translation pages,
organized by a global mapping directory (GMD).

DRAMDataCache.DRAM is also deployed as a data cache [18, 54]

to absorb I/O requests for low-latency access. For example, the LRU

policy is a classical caching algorithmused for SSDs [88], prioritizing

storing the data that has been recently accessed. If an I/O request hits

data in the cache, it will be serviced by the DRAMwithout accessing

flash memory.

4 Motivation
In this section, we compare existing host-level and device-level ver-

sioning methods. We then examine how current versioning SSD

solutions fail to track retention time orders, leading to data corrup-

tion. Moreover, we explore the challenges of data versioning in SSD

caches. Finally, we outline the motivation behind proposing LAST

to address these issues.

4.1 Host-Level vs Device-Level Versioning
Host-level versioning has been widely used for data history preser-

vation and is often deployed in the OS, at the filesystem level [6] or

25 50 100 200 300

85%

90%

95%

100%

Cache Size (MB)

O
v
e
r
w
r
i
t
t
e
n

P
a
g
e
s
R
a
t
i
o

LRU FIFO

Figure 3: Average ratio of overwritten pages in the data cache
at increasing cache sizes for LRU and FIFO policies. A larger
cache removesmore data versions due to its higher hit ratio.

M1 M2 M3 M4 M5 F1 F2 F3 A1 A2 A3

0%

125%

250%

L
a
t
e
n
c
y

I
n
c
r
e
a
s
e
R
a
t
i
o

LRU FIFO

Figure 4: The ratio of latency increaseswhen cache versioning
is introduced in SSDs equipped with LRU and FIFO policies.
We evaluate them by testing workloads shown in Table 2.

the block layer [100]. However, such approaches have shown critical

limitations.

In general, the OS exposes a larger attack surface to adversaries

because of its large Trusted Computing Base (TCB). Attackers can

exploit this surface to perform privilege escalation [4, 7] and gain

root privilege. Then, they can disable host-level versioning and con-

sequently compromise the data recovery. For example, ransomware

actors can exploit a vulnerability in the anti-cheat driver of Gen-

shin to escalate privileges, allowing them to disable antivirus pro-

cesses [85]. In addition, host-level solutions introduce extra write

traffic for versioningpurposes. Thus, theyalso suffer fromsignificant

performance degradation [84, 87, 96].

In contrast, device-level solutions [46, 96] shift the versioning

enforcement into the storage device to counteract OS compromise.

Moreover, they achieve transparent data preservation without in-

troducing extra I/O traffic. As a result, device-level approaches offer

advantages in defending against privileged adversaries [86] while

incurring trivial performance overhead [96] compared to host-level

methods. Therefore, this work primarily focuses on device-level

versioning methods.

4.2 Characterizing Data Retention in Versioning
SSDs

Flash-based SSDs make a compelling platform for device-level ver-

sioning [45, 46, 79, 96] because of their out-of-place update property

and inherent logging functionality.

Long data retention is crucial for mitigating system compromises,

as discussed in Section 2.4. Thus, we assess data retention efficiency

in an unmodified SSD (Baseline) and current versioning SSDs –

Enabling Secure and Efficient Data Loss Prevention with a Retention-aware Versioning SSD CCS ’25, October 13–17, 2025, Taipei

BVSSD [46] and TimeSSD
1
[96]. Implementation details are pro-

vided in Section 8.1. We define the retention drop factor (RDF) for

each reclaimed flash page as:

𝑅𝐷𝐹 =𝑅𝑇𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑/𝑅𝑇𝐿𝑜𝑛𝑔𝑒𝑠𝑡 (1)

where𝑅𝑇𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 represents the retention time of the selected erased

data page, and 𝑅𝑇𝐿𝑜𝑛𝑔𝑒𝑠𝑡 is the retention time of the longest-held

page upon the page erasure. If the versioning system can always

pinpoint the page with the longest RT, the RDF of the page is 1,

as 𝑅𝑇𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑅𝑇𝐿𝑜𝑛𝑔𝑒𝑠𝑡 and 𝑅𝐷𝐹 =
𝑅𝑇𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑
𝑅𝑇𝐿𝑜𝑛𝑔𝑒𝑠𝑡

= 1. Otherwise, a

page with a shorter RTmight be selected, resulting in 𝑅𝑇𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 <

𝑅𝑇𝐿𝑜𝑛𝑔𝑒𝑠𝑡 and 𝑅𝐷𝐹 <1.

In Figure 1, the RDFs of the SSDs range from 0.2 to 0.7. Specifically,

Baseline, BVSSD, and TimeSSD achieve average RDFs of 0.35, 0.62,

and 0.63, respectively. The small RDFs of BVSSD and TimeSSD are

because they cannot identify the retention time of versioned data,

causing the deletion of data with short retention time. Thus, cur-

rent versioning SSDs exhibit degraded data retention, limiting the

capability of recovering a data compromise.

Motivation 1:Current versioning SSD solutions do not optimally

retain pages in the SSD because they cannot track the order of the

retention time.

For a versioned file, removing its partial pages can result in the

file being unusable. For example, a versioned executable file cannot

be used after its recovery if some of the pages that make up the file

are reclaimed. We call these files shattered. To evaluate the preva-
lence of this issue in state-of-the-art versioning SSDs, we define

𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜 for a versioned file:

𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜 =𝑁𝑈𝑀𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑/𝑁𝑈𝑀𝑇𝑇 (2)

where𝑁𝑈𝑀𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 means the number of retained data pages of the

file, and𝑁𝑈𝑀𝑇𝑇 is the total number of data pages of the file.We cre-

ate 1,000 files, each containing 1MB of data, on versioning SSDs and

delete them after running a FIO [3] randomwrite workload (200GB).

We then run the same FIO workload again to evaluate the ratio

(𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜) of retained pages in each deleted file after execution.

Since the deleted data (over 170GB) generated by a FIO workload ex-

ceeds the total reclaimed data (21.8GB) duringGC, the versionedfiles

should not be reclaimed if the SSD correctly prioritizes data based on

retention time. However, as shown in Figure 2, existing versioning

SSDs, which cannot fully track retention time, may prematurely

erase some data pages in a deleted file (i.e.,𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜 < 100%),

leading to potential file corruption.

Motivation 2: Current versioning SSDs do not fully maintain

the invalidation order of data pages, leading to shattered files and

decreased file usability after recovery.

4.3 Characterizing Cache Versioning in SSDs
DRAM data cache [18, 54, 88] has been widely used in flash-based

SSDs to boost performance. Incomingdata is first served by the cache

before being evicted to the flash memory. However, upon a write

hit to the cache, the cached data is overwritten. This compromises

1
Although RSSD [79] is the most recent versioning work, it relies on the same retention

time identification algorithm (i.e., bloom filter) as TimeSSD. Moreover, RSSD requires

dedicated network hardware equipped on the SSD, which is not applied to current

commercial SSDs. Ourwork aims for data versioning in regular SSDs, and thuswe select

TimeSSD as a comparison.

system security by allowing attackers to overwrite recently writ-

ten data that remains in the cache and has not yet been saved (i.e.,

versioned) in flash memory.

To show this impact, we implement two classical caching policies

(i.e., LRU and FIFO) into regular SSDs [61] equipped with a DRAM

cache shown in Table 1 without cache versioning. Figure 3 shows

that the data cache incurs significant versioned data removal when

testing the workloads in Table 2. Moreover, the removal worsens at

increasing cache size because it results in a higher hit ratio which in

turn means more overwritten data.

Motivation 3: For SSDs equipped with DRAM data cache, they

lose version history for all write-hits in the cache, degrading their

capability to recover data.

An intuitive remedy for Motivation 3 is to perform out-of-place

writes in the data cache upon a write hit. Thus, we implement a

versioning SSD that operates write requests by writing all incoming

data to a free space in the DRAM, even in the case of a write hit.

Read requests operate in the same way as the SSD without cache

versioning. We observe that when the data cache is filled, the write

request incurs a data eviction. We then employ LRU and FIFO to

versioningSSDs that incorporate cacheversioningandcompare their

performance with regular SSDs equipped with the same caching

policies. Figure 4 shows that versioning the data cache significantly

increases the average latency over LRU and FIFO regular SSDs by

100.1% and 101%, respectively. This is because, even on a cache hit,

writes are forced to write in a new DRAM space, and thus cache

eviction cannot be avoided.

Motivation4:Versioning theDRAMcache is challenging because

it can significantly degrade the performance.

4.4 Why LAST?
In light of the aforementioned considerations, we are motivated to

propose LAST for the following reasons.

First, attackers with escalated privileges can kill any data protec-

tion process in the OS. LAST remedies this by providing versioning

enforcement inside the storage device, which is hardware-isolated

from the OS, providing resistance against privileged attacks and

outperforming host-level solutions.

Second, since a privileged adversary can disable malware detec-

tion, and compromises often take time to be discovered [73, 102],

it is critical to enable long retention of versioned data to ensure

availability. Therefore, we design LAST to prolong the preservation

of retained data in the storage device.

Third, current versioning SSDs cannot identify the retention time

order for versioned data pages, leading to suboptimal data retention

and shattered files, as discussed in Section 4.2. While bloom filter

(BF)-basedmethods[79, 96]were introduced to record retention time,

they fail to track the complete data retention order for two reasons:

(1) A BF only tracks the presence of elements (versioned data) but

cannot provide the correlations (order) of the stored versioned data.

(2) DRAMsizemight be too small to record the full data invalidations

(as happens for TimeSSD [96] and RSSD [79]). It is necessary to

delete the old BFs to release DRAM space, leading to the loss of data

invalidations. In this work, we show how our LAST can track the

complete data retention order for efficient data versioning.

CCS ’25, October 13–17, 2025, Taipei Weidong Zhu, Carson Stillman, Sara Rampazzi, and Kevin R. B. Butler

Finally, current versioning SSDs do not consider the DRAM data

cache. If a data cache is employed, it can lead to version loss on

write cache hits. Thus, we design LAST to overcome this limitation

by versioning the data in the SSD’s data cache while introducing

minimal overhead.

5 Threat Model
In this work, we focus on adversaries who attempt to compromise

stored data to make it inaccessible; for example, they can employ

ransomware [45] orwiper [9] attacks toprevent users fromaccessing

their data. Moreover, we assume that the host OS is vulnerable to

attacks from adversaries that can fully compromise it and gain esca-

lated privilege (root) [4, 7, 79, 96, 105]. Thus, the OS is untrusted, and

adversaries can disable and manipulate data protection mechanisms

deployed in the OS.

We trust the firmware of SSD [25, 79, 96] due to its reduced trusted

computing base (TCB) and independent processor and memory,

which provides strong isolation from the host OS. We also assume

that the firmware cannot be modified in the SSD [79, 96], secured by

methods like digital signature and secure boot [24, 25]. We neglect

the data loss risk in the DRAM due to power failure because modern

SSDs typically have capacitor- [21] or battery-backed [50] DRAM.

Thus, we trust storage devices (i.e., FTL) and assume the DRAM

data is preserved during power failure. We trust the hash algorithm

used in our deduplication and disregard its collisions, as we employ

BLAKE2 [26], which is secure with no known collisions. Preventing

hash collisions [36, 98, 99] is an active research area outside the

focus of this work. Other collision-prevention methods [36, 98] can

be applied to our approach.

We trust the manufacturer of the SSD, as assumed in prior

works [25, 58, 96], to securely generate and embed a credential.

The credentials are distributed to authenticated users and main-

tained securely using existing secure key techniques, such as USB

security key [22]. Thus, we assume that there is a trusted security

administrator to hold the credential securely, which can be used for

authentication when version management, such as data recovery,

needs to proceed. Upon the successful compromise of data by privi-

leged adversaries, the security administrator can disconnect the SSD

and plug it into another trustworthy computer to ensure secure data

recovery [96].

6 LASTDesign
In this section, we present an architectural overview of LAST, fol-

lowed by the details of its critical components.

6.1 LASTOverview
LAST employs Versioning Cache Management to manage the DRAM

data cache while tracking the data retention through the data in-

validation sequence. To mitigate the overhead of cache versioning

(see Section 4.3), LAST reserves a dedicated read cache for read

requests. When the DRAM cache is full, Versioning Cache Manage-

ment leverages OPEN to efficiently evict the cached data to flash

memory while preserving the invalidation sequence in the flash

memory. Thus, LAST can leverageOrder-aware GC to reclaim data

versions based on invalidation order, avoiding premature removal of

versioned data. Moreover, LAST devises a lineage-preserved dedu-

plication engine (LPDedup) to reduce data writes, enhancing flash

BLK 0 0 1
0' 1'BLK 1

PL 0
BLK 0 2 3

2' 3'BLK 1

PL 0
LUN 1LUN 0

Host

0
1
2
3
0'
1'
2'
3'

SQ
LAST SSD

Invalidation
Separate Module

Read Cache OPEN Eviction

1
2

3

4

5

6
Address Translation

Read?

Transaction Scheduling
CH 0 CH 1

Yes

Read misses

No

 Versioning Cache
Management

Req.
LPA0

…
LPA1
LPA2

Group 0

NVMe

…

7

Figure 5: The I/O workflow of LAST. LAST leverages version-
ing cachemanagement (grey area) for incoming I/O requests,
and itmanagesdata eviction fromtheDRAMtoflashmemory.

memory lifetime. Finally, LAST offers efficient version management

(Version Manager) for managing retained versions.

Figure 5 shows the I/O workflow of LAST. LAST judges the in-

coming I/Os to determine their request type 1 . For a read request 2 ,

LAST first queries the data cache. If the read hits, it will be served by

the DRAM cache. Otherwise 3 , LAST leverages the address trans-

lation to locate the requested data on flash memory and read it to

complete the read. For write requests, the invalidation separatemod-

ule identifies the overwriting data and stores them separately in the

DRAM for tracking their order 4 . When the data cache is filled 5 ,

LAST leverages OPEN to evict data from the DRAM cache to flash

memory 6 . Finally, LAST proceeds GC through Order-aware GC

and LPDedup to reclaim versioned data orderly while saving storage

space 7 .

6.2 Versioning CacheManagement
LAST devises cache versioning to retain the data invalidation order

with trivial overhead, containing the following modules.

Read Cache. Since DRAM cache versioning can lead to signif-

icant performance degradation as discussed in Section 4.3, LAST

maintains a read cache region for handling read requests, reducing

read overhead. In Figure 6, LAST creates a read cache list to store

the cached data for immediate access on read hits. If the read data is

not in the read cache or other caches, LAST retrieves it from flash

memory to finish the request and adds the data into the read cache.

For data replacement, we use the classical LRU policy in the read

cache as an exemplar, while other caching methods can be applied.

Multiple data versions exist in the SSD. To ensure reading the

correct (newest) data, LAST leverages the L2P table, which records

themapping from the logical address to the latest physical data page.

Thus, the read cache can retrieve thenewest data versionbyquerying

the L2P table.

Invalidation SeparateModule. Since data invalidation deter-
mines the retention time, LASTmaintains the invalidation sequence

of versioneddata to identify their retention timeorder. To retain such

sequence, LAST classifies the incomingwrite data into first-time and
overwriting categories, where overwriting requests invalidate exist-
ing data. Thus, the invalidation order can be tracked by maintaining

Enabling Secure and Efficient Data Loss Prevention with a Retention-aware Versioning SSD CCS ’25, October 13–17, 2025, Taipei

Data Cache in DRAM

Metadata in DRAM
LAST Tables

Cache Lineage
Table (CLT)

AD… LPA… Time…NAD… PAD…

Cached Hashing
Table (CHT)

FP… PPA… CNT…

First-time
Cache List
Data

…

^

Data ^

Overwriting
Cache List
Data

…

^

Data ^

Read Cache
List

Data

…

^

Data ^

LAST Cache Structure

Regular SSD Tables

LPA PPA… …

Cached Mapping
 Table (CMT)

VPA PPA… …

Global Mapping
 Directory (GMD) B

I
D

^
B
I
D

^ …

LAST Overwriting
Group List

SEG PPA… …

Global Hashing
 Directory (GHD)

Figure 6: Introduced data structures (grey area) of LAST. LAST
manages the data cache through link lists and introduces CLT
and Overwriting Group List to store the invalidation order.
CHT and GHD are used for LAST deduplication.

the arrival of overwriting requests sequentially. Since deletion re-

quests (e.g., Trim [11]) can also invalidate data, LAST transfers a

deletion request to an overwriting operation by writing with 0s.

In Figure 6, LAST creates first-time and overwriting cache lists to

maintain first-time and overwriting data, respectively, in the data

cache. The invalidation (retention) order can be maintained by indi-

vidually caching overwriting data sequentially based on arrival time

in the overwriting cache list. For a write request, LAST checks the

LPA to PPAmapping table to determine its data type. If the accessed

address does not exist in the cached mapping table (CMT) and has

no entries in the full mapping table in flash memory, which can

be queried through the global mapping directory (GMD), the write

request is directed to the first-time cache. Otherwise, the data is

sent to the overwriting cache. Data within these caches is organized

into linked lists, with newer entries added to the end as shown in

Figure 6, maintaining the invalidation order for effective version

management.

Order-Preserving EvictioN (OPEN).OPEN handles data evic-

tion for the first-time and overwriting cache regions, and it aims

to store adjacent data pages from first-time or overwriting regions

in the same flash block sequentially, mirroring their order in the

data cache. However, this requires evicting data from the cache to

a flash block sequentially, breaking the parallelism usage of flash

memory [91] and leading to non-trivial performance overhead [104].

To avoid this, LAST leverages OPEN to organize data into eviction

groups, each sized to match the parallelism of the flash memory.

Then, OPEN selects blocks with the same block ID (BID) from each

plane in flash chips to store the data in an eviction (e.g., overwriting)

group. Unlike traditional caches that evict adjacent data into dif-

ferent flash blocks, OPEN selects interleaved data from an eviction

group and evicts
2
them in parallel while maintaining invalidation

order in a flash block, as illustrated inAlgorithm 1.. Thismethod also

2
Eviction prioritizes the filled cache region matching incoming I/O types (overwriting

or first-time). If the device is idle, first-time or overwriting cache regions are processed

in FIFO sequence.

Algorithm 1 Interleaving Eviction of OPEN.
Input: N_CHs = Number of channels, N_LUNs = Number of flash chips

N_PLs = Number of planes, N_PGs = Numer of pages in a block

PGs_per_CH = Number of pages per channel

PGs_per_LUN = Number of pages per chip

PGs_per_PL = Number of pages per plane

BLKs_per_PL = Number of blocks per plane

BID = Current block ID for data group

1: 𝑁𝑈𝑀 =𝑁 _𝐶𝐻𝑠∗𝑁 _𝐿𝑈𝑁𝑠∗𝑁 _𝑃𝐿𝑠∗𝑁 _𝑃𝐺𝑠

2: 𝑃𝐺_𝑆𝑒𝑡 = {}

3: if First-time region or overwriting region filled then
4: 𝑃𝐺_𝑆𝑒𝑡 = {𝑁𝑈𝑀 of adjacent pages in the cache region}

5: end if
6: for 𝑃𝐺 in {0,1,...,𝑁 _𝑃𝐺𝑠−1} do
7: for 𝑃𝐿 in {0,1,...,𝑁 _𝑃𝐿𝑠−1} do
8: for 𝐿𝑈𝑁 in {0,1,...,𝑁 _𝐿𝑈𝑁𝑠−1} do
9: for𝐶𝐻 in {0,1,...,𝑁 _𝐶𝐻𝑠−1} do
10: 𝐸𝑣𝑖𝑐_𝐷𝑎𝑡𝑎 = 𝑃𝐺_𝑆𝑒𝑡[𝑃𝐺 + 𝑃𝐺𝑠_𝑝𝑒𝑟_𝑃𝐿*𝑃𝐿 +

𝑃𝐺𝑠_𝑝𝑒𝑟_𝐿𝑈𝑁 *𝐿𝑈𝑁 + 𝑃𝐺𝑠_𝑝𝑒𝑟_𝐶𝐻 *𝐶𝐻]

11: Flush 𝐸𝑣𝑖𝑐_𝐷𝑎𝑡𝑎 to the address (𝐶𝐻 , 𝐿𝑈𝑁 , 𝑃𝐿, 𝐵𝐼𝐷 , 𝑃𝐺)

12: end for
13: end for
14: end for
15: end for
16: 𝐵𝐼𝐷 = (𝐵𝐼𝐷 + 1) % 𝐵𝐿𝐾𝑠_𝑝𝑒𝑟_𝑃𝐿

preserves the spatial locality of data, and versions with similar reten-

tion times are likely to be stored in the same data blocks, reducing

GC overhead. Finally, OPEN creates an overwriting group list to track
the invalidation sequence between evicted overwriting groups, and

each overwriting group is related to a unique BID, which records the

location of the data group in the flash memory.

Unlike traditionalupdate-allowedcache,LASTcanevictdatawith-

out waiting for the cache regions to fill. OPEN leverages real-world

workload idleness and high internal parallelism of flash memory to

deploy background eviction. Real-worldworkloads often exhibit idle

times [66], allowing the system to schedule background tasks [60, 96]

for better performance. Moreover, flash memory can process multi-

ple I/O requests simultaneously due to its internal parallelism. Thus,

OPEN assesses idleness by monitoring flash memory bandwidth,

differing from traditional idle time prediction [60, 96]. If the current

write bandwidth exceeds a threshold (i.e., 20% of peak write band-

width), OPEN stops background eviction; otherwise, it continues

without waiting for cache regions to fill.

The cache flush command [101] is widely used in the storage

device to ensure data consistency. It compels to flush the data from

the cache to theflashmemory. LASTenables such enforcement in the

SSD. Upon a flush command, LAST forces the data eviction from the

first and overwriting caches to flash memory with the same method

as the background eviction.

6.3 Order-aware GC
LAST initiates GCwhen the ratio of free pages is lower than a thresh-

old (e.g., 20%). LAST chooses versioned data to erase sequentially

based on their retention times. Therefore, LAST needs to (1) search

the overwriting data to determine the retention time and (2) pinpoint

the location of versioned data.

Figure 7 shows the GCworkflow. Overwriting groups are sequen-

tially organized in the overwriting group list, with the head group

representing the earliest data invalidation. LAST selects this group
for garbage collection 1 . Time lineage information is stored in the

out-of-band (OOB) area of each flash page [96] to track data versions

CCS ’25, October 13–17, 2025, Taipei Weidong Zhu, Carson Stillman, Sara Rampazzi, and Kevin R. B. Butler

^Overwriting
Group List

0 1 2 3 4 5 6 7

Select head
group for GC

Selected
Overwriting

group
Locate versioned

data by OOB

0' 1' 2' A 3' A

4' B 5' C 6' 7'

Blocks with
versioned

data
 Hash

and Query

Copy out pages

B C New Flash
block

Update
table

Hashing Table
(CHT or searched

through GHD)

h(A) PPA 4
FP PPA CNT

h(B) PPA 1
h(C) PPA 1
… … …

Page OOB

Update OOB

Flash page
and its OOB

Blocks
erasure

1

2

3
4

57

6

FP PPA CNT
h(A) PPA 2
… … …

Hashing Table
(CHT or searched

through GHD)

Figure 7: ExampleworkflowofGC and deduplication in LAST.
Pages (0’ to 7’) will be reclaimed as the data in the head group
invalidates them. If LAST’s deduplication identifies identical
content, multiple data versions share the same flash page.
Since the hash value of page A exists in the hashing table, it
will not bemigrated, and its reference countwill increase by 2.
The fingerprints of B and C do not exist in the hashing table;
they will bemigrated to a new flash block, and their hashing
metadata will be inserted into the table.

(details in Section 6.5). LAST traverses the OOBs of data pages in

the head group to locate versioned data for reclamation 2 . Then,

it copies the valid and versioned data pages to free blocks, updates

their OOBs, and erases the selected blocks.

6.4 Lineage-preserved Deduplication
LAST utilizes lineage-preserved deduplication (LPDedup), which

operates during GC, to save storage space. LPDedup preserves the

invalidation order by maintaining the ordered layout of data within

overwritinggroups. InFigure7,LASTcomputes thefingerprintusing

BLAKE2 [26], a fast hash algorithm used in deduplication SSDs [98].

It then searches a hash table to verify if the data exists 3 . Each hash

table entry is a key-value pair that uses the fingerprint as the index,

followed by the address and reference count, which indicates the

number of pages that share thefingerprint. SinceDRAMcannot store

all fingerprints and only a small fraction (10%-20% [31]) are highly

duplicated, LPDedupmaintains a cached hash table (CHT) in DRAM

for recently accessed fingerprints, while the full table resides in flash

memory and is managed by a global hashing directory (GHD). LAST

splits the hashing space into segments with equation 𝑆𝑒𝑔 = 𝐻 (𝑃)
mod 𝑛, where 𝐻 (𝑃) is the hash value of a data page 𝑃 and 𝑛 is the

number of required data pages for the hashing table. Fingerprints

in a flash page share the same 𝑆𝑒𝑔, and the GHDmaps each 𝑆𝑒𝑔 to

its physical page address, allowing for querying of the full hashing

table.

When migrating a page during GC, if its fingerprint is not found

in CHT or the hashing table stored in flashmemory, LAST copies the

data to a new flash block 4 and adds the fingerprint to the CHT 5 .

Otherwise, it skips copying the data and updates or inserts – upon

a miss in CHT– its hashing information in the CHT. Finally, LAST

updates the metadata within the OOB 6 in an out-of-place manner

by adding a new entry in its OLT using a partial page program
3
[75]

3
For the SSD not supporting partial programming, LAST allows to redesign the OOB

metadata management by storing the OLT information into flash memory directly and

DRAM Flash Memory

Cache Lineage Table (CLT)

AD NAD Time
… … …

AD2 PPA T2
AD3 AD2 T3

PAD
…

AD3
^

LPA
…

LPA1
LPA1

Evict
AD1

AD1 ^ T1

AD NAD Time
… … …

AD2 AD1 T2
AD3 AD2 T3

AD2

PAD
…

AD3
^

LPA1

LPA
…

LPA1
LPA1

OOB Lineage Table (OLT)
N_PPA Time

… …
P_PPA

…
LPA
…

… …… …
… …… …

Page OOB

Page OOB Page OOB Page OOB Page OOB

Page OOB Page OOBPage OOB

Page A Page B Page C Page D

Page E Page F Page G

: To next page : To previous page

GC and deduplication, and
page C and F share page H

Page OOB Page OOB Page OOB

Page OOB Page OOB

Page OOBPage A Page B Page D

Page E

Page H

Page G

The OOB Lineage
Table (OLT) of Page H

N_PPA Time
D Tc

P_PPA
B

LPA
LPA2

G TfE LPA3

LPA2

LPA2

LPA3

LPA3

Cache Lineage Table (CLT)

Figure 8: Example of LAST data lineagemanagement. In CLT,
when a data page (e.g., AD1) is evicted to flashmemory, the
metadata of the page (AD2) that overwrites the evicted data
will be updated by changing its NAD to the new flash address
(PPA). InOLT, each entry indicates a lineage. TheOOBof page
H includes two entries to indicate the previously recorded
lineage information on pages C and F after deduplication.

for lineage management (see Section 6.5), following erasing the

selected flash blocks 7 . Since erasing a page requires adjusting the

reference count (CNT) in the hash table or deleting the entry if the

CNT reaches zero, LAST updates the CHT if it’s cached. If not, it

retrieves the hash mapping from flash memory, updates the entry,

and writes it back to a new page.

6.5 Metadata of Versions
LAST records the updating correlations of the data stored within

the DRAM cache and flash memory through a Cache Lineage Table

(CLT). CLT contains the reflection between a data page in the cache

and its metadata, which includes data creation time, the DRAM

address (AD), the address (NAD) of the next data page updated by

the current data, and the address (PAD) of the previous data page

that updates the current data. When a data page is evicted from

the cache to flash memory, LAST updates the CLT to maintain the

lineage between the data page in the data cache and flash memory

shown in Figure 8.

Since LAST introduces deduplication, multiple versioned or valid

pages can share a physical flash page. Thus, LASTmust identify the

correct lineage from the duplicated data page, which can comprise

multiple data lineages. In Figure 8, LAST creates an OOB Lineage

Table (OLT) in theOOBarea of each flash page to storemetadata. The

OLT of each flash pageOOB comprisesmultiple entries representing

different versioning chains to store the lineage information. Since

the space of the OOB area is limited, LAST only allows ten lineage

entries in an OLT, and we evaluate its sufficiency in Section 8.2.

6.6 VersionManager
LAST provides a lightweight tool for version management.

Versionprobe.Toquery theversioneddata,usersneed toprovide
the address (LPA) and the creation time of the data. We thus provide

reserves a DRAM portion for updating lineage information, similar to the management

of hash table.

Enabling Secure and Efficient Data Loss Prevention with a Retention-aware Versioning SSD CCS ’25, October 13–17, 2025, Taipei

Table 1: Parameters of the SSD used in our evaluation.

Parameters Value Parameters Value
SSD Capacity 512GB OOB Area 409B

Page Size 4KB OOB Read 0.02ms

Pages/Block 256 Page Read 0.04ms

Blocks/Plane 16384 PageWrite 0.2ms

Planes/Chip 1 Block Erase 2ms

Chips/Channel 8 Data Cache 300MB

Channels 4 Metadata DRAM 200MB

two interfaces for versions’ probe:TimeProbe(LPA) andPGProbe(LPA,
time). TimeProbe will return all the timestamps of versioned data us-

ing the LPA. Based on the LPA, LAST can query the address mapping

table to acquire the PPA of the latest data. Then, LAST will query

the CLT and OLT to get the timestamps of versions. Thus, LAST

could return the timestamps to users through TimeProbe. Once users
receive the timestamps of versions, they can query the versioned

data through the interface PGProbewith the LPA and time. PGProbe
will look at the L2P table to locate the latest data and then query the

lineage tables (i.e., CLT and OLT) to return the versioned data to

users based on the time.
Version rollback.Users may backtrack their data to a past ver-

sion. Thus, LAST provides an interface - RollbackPG(LPA, time) - to
enable the rollback of an individual data page. Specifically, LAST

queries themapping table to locate the latest PPA. Then, based on the

PPA, LAST searches theCLTorOLTs using the time to find the target
version. In the end, LAST updates the L2P table. We further propose

an interface RollbackAll(time) to enable an SSD-wide rollback.When

a user requests to recover the SSD to a prior time t after an attack,
LASTneeds to revert the entire disk to the previous timepoint t. First,
LAST queries all the entries in the L2P table. Then, LAST traverses

all of the versioned pages through CLT and OLTs to get the PPAs

of the latest data pages before time t. Finally, LAST updates the L2P

table with new PPAs to finish the rollback.

6.7 Implementation
We implement LAST on FEMU [61], a prevalent QEMU-based em-

ulator widely used for SSD-related research [43, 47, 95]. In Ta-

ble 1 [61, 78], the SSD consists of 512 GB flash memory and 500

MBDRAM (0.1% of flash memory [65]) where we allocate 200 MB

for the metadata and 300 MB for the data cache. For the metadata,

we allocate 100 MB for CMT [64] and 8 MB – sufficient for tracking

the mappings of all the pages – for the GMD. Moreover, we allocate

16 MB [31] for the CHT, 14 MB for the GHD, 0.2 MB for the Over-

writing Group List, and 1.3 MB for CLT. Thus, the total metadata

introduced by LAST will be 31.5 MB, and we will validate their rea-

sonability in Section 8.2. In addition, we allocate 16% data cache for

the first-time cache, 16% data cache for the overwriting cache, and

68% data cache for the read cache. Moreover, we allow 10 entries in

the OLT.Wemodify the FTL to create a backdoor, allowing users to

send version management commands and receive results. Finally,

we scale the SSD processor’s clock rate to 0.5 GHz from our 3.2GHz

host CPU by multiplying the table query time of I/Os in FTL with

6.4.

7 Security Analysis
Security Improvements. LAST advances security over existing

in-device versioning in three ways: (1) LAST retains data upon its

arrival in the storage device, whereas current versioning SSDs store

data in their DRAM cache, which can lead to data loss. LAST thus

provides more data versions to remediate system breaches. (2) LAST
maximizes the SSD’s ability to preserve versioned data as it avoids

erasing versions with short retention time, which can significantly

prolong the overall retention time, as shown in Section 8.5. For ex-

ample, stealthy ransomware like Vipasana
4
writes minimal data,

delaying detection. LAST’s retention-aware design preserves data

for extended periods, enabling recovery even after prolonged stealth

operations. The longer fail-safe time window is critical for system

recovery. (3) LAST avoids creating shattered files, as shown in Sec-

tion 8.5, which ensures the integrity of versioned files for better

recovery. In contrast, existing versioning SSDs can lead to shattered

files, making their recovered data unusable, as discussed in Sec-

tion 4.2.

Attacks on Versioning SSDs. Our LAST platform is resistant to

compromise for the following reasons: (1) If attackers write and
delete a large amount of data in a short time and force GC to over-

whelm the SSD [79], the abnormal activities can be easily noticed by

users [96] because the performance and available storage capacity

will be significantly decreased, impeding normal applications. Note

that we do not address anomaly detection in this work, as it is an

active research area with extensive literature [27, 52, 57, 105], which

is orthogonal to our data versioning target. (2) LAST achieves a long

retention time of up to 126.4 days as discussed in Section 8.5. Mal-

ware often seeks to finish an attack quickly [45, 96]. If the malware

attempts a “low and slow” attack of slow updates to the SSD, the re-

tention timewill remain high, leading to a high risk of being detected.

(3) Flash memory capacity continues to increase due to new NAND

flash technologies (e.g., QLC SSD [23]); for example, the largest SSD

can be 100TB [17]. A large SSDmakes the slowly-writing GC attack

difficult as it will take an impractically long time to force GC.

How Long Should Historical Data Be Retained? In the worst-
case scenario, attackers can remain undetected within a victim sys-

tem for extended periods. This suggests that historical data should

ideally be stored indefinitely. However, due to limited storage capac-

ity and associated costs, it is not feasible tomaintain infinite data ver-

sions. Therefore, LAST seeks to maximize historical data protection

within storage capacity constraints. To achieve this, LAST employs

an approximate-optimal data versioning strategy that avoids remov-

ing recently retained historical data, focusing instead on reclaiming

data that have been stored the longest. In addition, to mitigate the re-

tention limitations of currently versioning SSDs, employing higher-

capacity SSDs can be beneficial – particularly given the emergence

of more affordable, large-capacity SSD devices [17, 23].

Broader Security Engagement. LAST benefits from trusted com-

puting primitives. For example, (1) to ensure the authenticity of

SSD’s firmware, a trusted platform module [40] can be integrated

into the SSD to ensure the integrity of SSD firmware before boot,

as it can maintain cryptographic keys securely and provide remote

attestation. (2) Trusted execution environments (TEE) could provide

an extended trusted computing boundary for complex operations

in the SSD. Thus, integrating TEE with LAST can provide advanced

version management using file-level semantic information [105].

4
Hashtag: 8d2c4c192772985776bacfd77f7bc4d9.

CCS ’25, October 13–17, 2025, Taipei Weidong Zhu, Carson Stillman, Sara Rampazzi, and Kevin R. B. Butler

Table 2: The characteristics of evaluated traces.

Name ID Write Ratio DailyWrite

MSR

hm_0 M1 73.7% 2.9 GB/Day

prxy_0 M2 96.9% 7.7 GB/Day

rsrch_0 M3 90.7% 1.5 GB/Day

wdev_0 M4 79.9% 1 GB/Day

mds_0 M5 88.1% 1 GB/Day

FIU

mail F1 58.8% 141.5 GB/Day

web F2 78.6% 1.8 GB/Day

homes F3 99.1% 3.8 GB/Day

ALI

dev_1 A1 99% 4.4 GB/Day

dev_2 A2 99% 11.6 GB/Day

dev_3 A3 95% 11 GB/Day

LAST can be integrated into forensic workflows, supporting the

analysis of systemactivity. For example, in the event of a cyberattack,

LAST preserves historical filesystem metadata (e.g., inodes) and

data content for a long time in a trusted manner without being

compromised by privileged attackers. This can be used by security

administrators to reconstruct the chain of the attack and identify its

root cause after the occurrence of the attack.

8 Evaluation
This section answers the following research questions: (Q1)How
much space will versioning metadata consume? (Q2)What is the

performance of LAST? (Q3)How does LAST affect the lifetime of

the SSD? (Q4) How long can the versions be retained in LAST?

(Q5) Can LAST eliminate or alleviate shattered versions? (Q6)How
efficient the version manager is? We evaluate the space consump-

tion of metadata (Q1) in Section 8.2. LAST’s performance (Q2) is
assessed in Section 8.3. The impact on SSD lifetime (Q3) is examined

in Section 8.4. Finally, we answer (Q4), (Q5), and (Q6) in Section 8.5.

8.1 Experimental Setup
EnvironmentalSetup.Weusean IntelXeonE3-1245v5@3.50GHZ

8-coreprocessorwith64GBDRAM.Ubuntu20.04.5withkernel 5.13.4

is deployed as the host OS. In addition, we allocate a 50GB QCOW2

image file and install Ubuntu 18.04 along with kernel 4.15.0 to build

a guest system on FEMU; we allocate 4GB DRAM to the guest with

four vCPUs.

Comparison Selection.We implement multiple current regular

and versioning SSDs for comparison.

(1) Baseline. This is a regular FEMU SSD equipped with LRU [49]

policy without cache versioning.

(2) Baseline-BGE. This is a variant of Baseline with the background
eviction, similar to LAST.

(3) LAST variants. LAST-NoRCA is a variant of LAST without the

read cache. Similarly, LAST-NoBGE is created by removing back-

ground eviction, and LAST-NoDedup is obtained by disabling the

deduplication feature.

(4) Versioning, BVSSD, and TimeSSD. Since current versioning SSDs
overlook cache versioning,we borrowLAST’s interleaving and back-

ground eviction strategies to an unmodified FEMU SSD (Versioning),

BVSSD [46] and TimeSSD [96] for a fair comparison. All incoming

data writes are first served by the DRAM cache in a logging fashion

without removal. Finally, we re-implement the design of BVSSD and

TimeSSD in the flash memory as follows. BVSSD sets a global GC

threshold to monitor the ratio of free pages instead of at the chip

level while using a greedy algorithm to select data blocks during GC.

We implement TimeSSD Bloom filters (BFs) using an open-source

library [2]. Each BF stores 100,000 invalidated PPAs with 0.01% false

positives rate and occupies 234KB of memory [1]. We allocate 64MB

of DRAM – as in TimeSSD – for BFs and compression buffers, allow-

ing up to 280BFs and tracking 106.8GBof invalidated data.Moreover,

we implement TimeSSD to compress data during GC at a 20% [96]

ratio using LZF [5] and use a greedy algorithm for block selection

during GC. Finally, the SSD parameters are consistent with LAST,

including 300MB data cache and 200MBmetadata.

Workloads and EvaluationMethod.We run experiments using

the FIO benchmark [3] and real-world workloads from MSR [70],

FIU [56], and Alibaba [12], as detailed in Table 2. The Alibaba traces

provided enough data to trigger GC. However, the write sizes from

MSR and FIU are too small to initiate GC. Thus, we duplicate MSR

and FIU traces with an incremental offset (2GB) to the addresses at

each duplication [96].

To evaluate performance (Figure 10 and Figure 14), we first fill the

cache using FIO with a sequential write workload. Then, we run 1

million traces as a warm-up before conducting formal experiments,

maintaining a 10:1 ratio of warm-up to formal traces [104]. However,

thewarm-up traces do not triggerGC in the experiments of Figure 14.

We run the duplicatedMSR and FIU traces and the full Alibaba traces

to make the SSD close to full before starting the warmup-formal

performance evaluations. For other experiments (i.e., Figure 16-??)
that require GC, we employ only the duplicated traces and the full

Alibaba traces. Note that all experiments run for four times.

Deduplication Setup. We use BLAKE2 hash algorithm and set

the hashing latency to 10us, consistent with previous deduplication

SSDs [98].We evaluate the ratio of detected replicated data in the FIU

workloads as the deduplication ratio, and their ratios ofmail,web,
and homes are 89.3%, 58.3%, and 33.5%, respectively. Then, we use the
deduplication ratios when running the FIU traces. For MSR and ALI

traces that do not have hash information, we set their deduplication

ratio to a lower value (20%), matching the compression ratio in

TimeSSD [96].

8.2 Metadata Size Testing
We evaluate only the reference counts of FIU in Figure 9, as other

traces do not include hash fingerprints. Over 96% of fingerprints in

FIU traces have reference counts of nomore than nine. Since an OLT

supports 10 entries, it is sufficient for storing lineage. Moreover, the

OOB area consumes a maximum of 280 bytes for the OLT, fitting

within the typical 409B size (10% of a flash page [62]). Thus, the OOB

area is adequate for storing lineage metadata. In the worst case, if

LAST directs the data to a flash page with a full OLT (i.e., 10), the

page will not undergo deduplication and will instead be written to a

free page.

Current versioning SSDs use BFs to track data invalidation [79,

96], requiring substantial DRAM; for example, a 512 GB SSD needs

306.8MB DRAM [79, 96]. This requirement increases with larger

SSDs as more invalidation information must be stored. To avoid

overwhelmingDRAM, priorworks only reserve partial invalidations

by allocating 64MB [96] to the BF. However, this leads to the loss

of invalidation information, degrading the ability to reconstruct

versioneddataandharmingavailability. In contrast, LASTneedsonly

Enabling Secure and Efficient Data Loss Prevention with a Retention-aware Versioning SSD CCS ’25, October 13–17, 2025, Taipei

80% 85% 90% 94% 95% 96%

0

5

10

Percentiles

R
e
f
e
r
e
n
c
e

C
o
u
n
t

F1 F2 F3

Figure 9: Reference count of FIU traces at tail percentiles.

31.5MB of DRAM formetadata, as it directly records the invalidation

sequence in the data layout of flash memory.

8.3 Performance Testing
PerformancewithoutGCTriggered. In Figure 10, LAST increases
average latency over the Baseline SSD by 1.5%. LAST introduces

trivial latency overhead for the following reasons. (1) LAST creates a

read cache for incoming read requests. (2)OPENproactively releases

the first-time and overwriting caches in the background to avoid

cache eviction. (3) Hash operations occur during GC, outside the

critical I/O path. Baseline-BGE increases the latency over LAST

by 9.3%, as Baseline-BGE proactively evicts data from the cache,

decreasing read performance. Thus, current DRAM-cached SSDs

typically donot adopt backgroundeviction in their design [41, 64, 89].

Additionally,LAST-NoBGEincreases latencyby139.3%overBaseline

due to unavoidable data eviction from cache versioning. Without

readcache (LAST-NoRCA),LAST’s latency for theF1 (mail)workload

increases over Baseline 41.9x. For other workloads, LAST-NoRCA

increases latency over regular SSDs by 30%. These results indicate

that the read cache is critical for SSD’s performance, especially for

workloads like F1 that have a higher ratio of read requests.

For versioning SSDs, we evaluate only BVSSD and TimeSSD, as

BVSSD shares the same caching policy as Versioning, yielding iden-

tical performance without GC. Figure 10 shows that LAST decreases

the average latency over BVSSD and TimeSSD by 7.7% and 10.3%, re-

spectively. LAST achieves better performance due to its read caching

region. Moreover, TimeSSD’s Bloom Filter (BF) computations occur

in the critical I/O path; the BF processing latency (1us) is amplified

by the DRAM cache, leading to higher overhead.

Write Bandwidth.We evaluate the write throughput of LAST and

Baseline when running sequential (SW) and random write (RW)

workloads in FIO at various request sizes. Figure 11 shows that LAST

achieves a better bandwidth than Baseline when request sizes are

under 32KB. LAST performs better at lower incoming throughput.

When the incoming throughput reaches the threshold (20% of the

highest bandwidth), LAST stops the background eviction. Thus,

LAST approximates the bandwidth of Baseline after 32KB.

Read Bandwidth. Figure 12 shows the bandwidth of LAST and

Baseline when increasing the DRAM cache size. Since LAST creates

a read cache, we evaluate the sequential read (SR) and random read

(RR) workloads using FIO. LAST works efficiently when the SSD

offers hundreds of megabytes of data cache, which is a practical size

of modern SSDs [13, 18, 19, 90].

Cache Partition.We evaluate the data cache partition in Figure 13.

Increasing the write cache ratio from 35% to 80% results in a 2.1%

increase of random write (RW) bandwidth, indicating that larger

write caches provide minimal performance benefits. This is because

background eviction efficiently flushes data to flash memory. In con-

trast, random read (RR) bandwidth is decreased by 8.2% as the write

M1 M2 M3 M4 M5 F1 F2 F3 A1 A2 A3

0.8

1

1.2

N
o
r
m
a
l
i
z
e
d

L
a
t
e
n
c
y

Baseline Baseline-BGE BVSSD TimeSSD LAST LAST-NoRCA LAST-NoBGE

Figure 10: Normalized latency of Baseline SSDs, current ver-
sioning SSDs, and LAST.

4 8 16 32 64 128 256

0

325

650

Request Size (KB)

B
a
n
d
w
i
d
t
h
(
M
B
/
S
)

Baseline-SW LAST-SW

Baseline-RW LAST-RW

Figure11:Writebandwidthof
LAST at various request sizes.

300 500 700 900

70

75

80

Cache Size (MB)

Baseline-SR LAST-SR

Baseline-RR LAST-RR

Figure12:Readbandwidthof
LAST at various cache sizes.

cache expands, reducing the capacity of the read cache. This decrease

becomes evenmore detrimental forworkloadswith a higher hit ratio.

In F1 (mail), the access latency of LAST with a 35% write cache is

22.9% higher thanwith a 65%write cache. Thus, our implementation

allocates the minimum required DRAM space to write caches, while

reserving the majority of DRAM space for the read cache.

Performance duringGC. In Figure 14, whenGC is triggered, LAST

incurs a latency overhead of 5.1% over the Baseline SSD. Baseline

achieves better performance as it neglects cache versioning. How-

ever, LASTmitigates the overhead through background eviction and

deduplication techniques. Moreover, the hash latency (10us) is far

less than the latencies of flash write (200us) and erase (2ms). Thus,

the hash overhead is trivial, and LAST incursminimal overhead over

regular SSDs.

Figure 14 also shows that LAST reduces the average latency over

Versioning, BVSSD, and TimeSSD by 23.6%, 23.7%, and 72.7%, respec-

tively. LASToutperforms existing versioning SSDs, as LAST reserves

a read caching region for read requests, and it retains the spatial

locality of versioned data in a data block, helping to concentrate

versioned data pages into fewer flash blocks for less data migration.

Additionally, LAST decreases the latency over LAST-NoDedup by

4.2%, as the deduplication can decrease the data migration during

GC.

GCExecution Time.We evaluate the execution time of a GC op-

eration in Figure 15. LAST increases the average GC latency over

Versioning and BVSSD by 3.8% and 6%, respectively, but reduces it

over TimeSSD by 94.1%. LAST does not significantly prolong GC

execution because it maintains the spatial locality of data in flash

memory, minimizing page migrations. Moreover, LAST’s dedupli-

cation reduces page migrations during GC. Our results show that

disabling deduplication (LAST-NoDedup) increases GC latency by

50.1%, demonstrating the effectiveness of our deduplication.

8.4 Lifetime Testing
Write amplification (WAF) is the ratio of data written inside storage

to thedatawrittenbyusers,where a largeWAF indicates aworse stor-

age lifetime. Figure 16 shows that LAST increases averageWAF over

Versioning and BVSSD by 1.5%.Moreover, LAST-NoDedup increases

CCS ’25, October 13–17, 2025, Taipei Weidong Zhu, Carson Stillman, Sara Rampazzi, and Kevin R. B. Butler

35% 50% 65% 80%

70

110

150

Write Cache Ratio

B
a
n
d
w
i
d
t
h

(
M
B
/
s
)

RR RW

Figure 13: Bandwidth of LAST
at different write cache ratios.

M1 M2 M3 M4 M5 F1 F2 F3 A1 A2 A3

0.5

1

1.5

N
o
r
m
a
l
i
z
e
d

L
a
t
e
n
c
y

Baseline Versioning BVSSD TimeSSD LAST LAST-NoDedup

Figure 14: Normalized latency of Baseline, current
versioning SSDs, and LAST during GC.

M1 M2 M3 M4 M5 F1 F2 F3 A1 A2 A3

0

0.1

0.2

0.3

G
C
L
a
t
e
n
c
y
(
s
)

Versioning BVSSD TimeSSD LAST LAST-NoDedup

Figure 15: Average GC execution time of
LAST and versioning SSDs during GC.

M1 M2 M3 M4 M5 F1 F2 F3 A1 A2 A3

0

1.3

2.6

W
A
F

Versioning BVSSD TimeSSD LAST LAST-NoDedup

Figure 16: Write Amplification Factor
(WAF) of LAST and versioning SSDs.

M1 M2 M3 M4 M5 F1 F2 F3 A1 A2 A3

0%

50%

100%

A
v
e
r
a
g
e
V
e
r
s
i
o
n

R
a
t
i
o

Versioning BVSSD TimeSSD LAST LAST-NoDedup

Figure 17: Ratio of available versions of cre-
ated files in LAST and versioning SSDs.

M1 M2 M3 M4 M5 F1 F2 F3 A1 A2 A3

2
1

2
4

2
7

R
e
t
e
n
t
i
o
n
D
a
y
s

Versioning BVSSD TimeSSD LAST LAST-NoDedup

Figure 18: Average retention of erased
pages in LAST and versioning SSDs.

theWAF value over LAST by 0.2%. LAST incurs trivial lifetime degra-

dation. LAST can directly locate the flash block that contains expired

data through the data group in the overwriting group list. Since data
spatial locality is preserved in each data group, the expired data pages
are likely to be maintained in fewer blocks. Thus, LAST achieves

negligible lifetime overhead over BVSSD.Moreover, LAST decreases

theWAF over TimeSSD by 37%. Since TimeSSD is not aware of the

number of expired pages, which are not recorded by valid BFs, in

selected blocks during GC, they may contain a significant amount

of unexpired data, which should be migrated, burdening the SSD’s

lifetime.

8.5 Version Availability andManager Testing
Shattered Version.We test the ratio of retained versions of 1,000

deleted files after GC in versioning SSDs and LAST. Using a method

similar to that in Section 4.2, we split the trace into two halves. Then,

we ran the first half, deleted the 1,000 files, and ran the second half.

Notably, the traces do not access the created files. In Figure 17, both

LAST and LAST-NoDedup maintain 100% versioned files, whereas

Versioning, BVSSD, andTimeSSDonly retain 42.8%, 10.1%, and 41.6%

of versioned data, respectively. LAST reclaims versioned data based

on the invalidation order, avoiding early deletion of versioned data.

In contrast, existing versioning SSDs cannot track retention times,

leading to premature removal of versioned files.

Retention Time. Figure 18 shows that LAST prolongs the aver-

age retention time of versioned data over Versioning, BVSSD, and

TimeSSD by 165.9%, 96.5%, and 61.4%, respectively. LAST retains

data by up to 126.4 days (M4) with an average of 52.6 days, whereas

existing versioning SSDs can only achieve 19.8 days, 26.8 days, and

32.6 days on average, respectively. LAST avoids erasing versions

with a short retention time. In contrast, BVSSD has no versioning

policy to prolong the lifetime of deleted data. TimeSSD cannot track

the invalidation sequence of each versioned flash page or infer the

invalidation sequence of expired BFs due to limited DRAM capacity,

as discussed in Section 8.2.

VersionManager.Weevaluate the effectiveness of versionmanager

in Table 3. TimeProbe, PGProbe, and RollbackPG operate at page

granularity, and they can be performed quickly with a fewmillisec-

onds to finish per-page management. In M4 andM5workloads, they

Table 3: Execution time of LAST versionmanager.

M1 M2 M3 M4 M5 F1 F2 F3 A1 A2 A3
TimeProbe (ms) 0.6 93.7 1 549.1 777.4 0.3 0.3 3.5 6.3 6.4 4.6

PGProbe (ms) 0.4 52.9 0.9 407.7 574.2 0.07 0.2 2.9 5.3 5.3 3.5

RollbackPG (ms) 0.4 66.9 0.9 453.3 643.5 0.03 0.3 2.1 5.3 5.3 3.4

RollbackAll (s) 31.2 20 49.2 36.3 37.8 14.4 19.3 29.3 49.3 49.3 78.4

have a much longer operating time because the queried data was

updated many times (e.g., 27,000 times in M4 of TimeProbe), leading

to heavy queries in the OOB area. Finally, LAST can rollback the SSD

to a previous state in no more than 80 seconds through RollbackALL.
These results show that LAST achieves fast version management.

9 Discussion
Consistency in the Data Cache. To ensure the consistency of the
data stored in DRAM cache, modern SSDs typically employ power

loss prevention (PLP) measures (e.g., supercapacitor [21]) to keep

theDRAMcache powered upon a power failure formilliseconds [81]

or even seconds [82] to flush data from the data cache to flash mem-

ory. Therefore, LAST adopts the existing PLP methods employed in

modern SSDs to ensure data consistency in the data cache.

Caching Algorithms. The caching methods of SSDs are classified

intowrite-through [90] andwrite-back [18, 41, 54, 64, 88, 89] policies.

However, thewrite-back scheme is predominantly employed in SSDs

for two reasons. (1) The write-through policy concurrently writes
data into the data cache and flash memory, exposing the latency

of the slow flash memory for data writes. In contrast, the write-

back policy serves I/Os with low-latency DRAM on a cache hit. (2)
The write-through policy degrades the lifetime of flash memory by

writing data into it even when the data hits the data cache. Thus,

LAST considers the write-back cache due to its prevalent use in

modern SSDs.

Extensibility.LAST is compatiblewith other versioning techniques.

For example, since LAST deduplication computes hash fingerprints

with flash page granularity, we could deploy compression at page

level as used in TimeSSD [96] to further decrease space consumption.

Moreover, LAST can be used in RSSD to select versions with long

Enabling Secure and Efficient Data Loss Prevention with a Retention-aware Versioning SSD CCS ’25, October 13–17, 2025, Taipei

retention time sequentially and store them in the cloud storage

instead of in the local SSD.

While LAST employs data versioning with the write-back policy,

LAST can also be incorporated into the SSD equippedwith thewrite-

through data cache. Specifically, we can create two write pointers

for incoming data, where each write pointer is assigned with a data

group (see Section 6.2). Therefore, we canmonitor the incoming data

to write the first-time and overwriting data into the flash memory

using two write pointers separately. We leave this as an extension

for our future work.

Impact on Other FTLModules. LASTmodifies the caching and

GCmodules of the SSD’s firmware. However, it remains compatible

with other FTL functionalities. For example, LAST leverages current

address mapping methods [42, 48] to manage the mapping table.

Wear-leveling can operate at the granularity of data groups (see Sec-
tion 6.2), and LAST uses the current wear-leveling approach [30]

to distribute wear evenly across flash blocks. Finally, LAST is com-

patible with bad block management, which transparently replaces

broken data pages with good ones [53] for address translation.

Limitations and Future Directions. While LAST significantly

improves the availability of versioned data to alleviate the risk of

data loss, it still suffers from the following limitations. (1) LAST
maintains versioned data at the storage level, which lacks semantic

context (e.g., provenance), limiting forensic utility. An interesting

direction is to integrate semantic inference for enhanced recovery

and forensic efficiency. (2)With limited storage capacity, retention

time may degrade under heavy workloads. A promising direction is

analyzing how real-world workloads affect retention and exploring

integration with high-capacity storage (e.g., QLC SSDs).

10 RelatedWork
Host-level Versioning. Partial versioning retains a subset of data
states such as using snapshots [10, 97], logging [80], or selective

backups [32, 69, 93]. Ext3Cow [76] provides a file versioning and

snapshot. Subramanianet al. [87]proposed ioSnap toefficiently snap-

shot system state within flash-based storage. However, they both

preserve a limited data lineage and cannot eliminate the possibility

of data loss.

Eidetic versioning [33, 46, 69] is a technology that can record

and recall any past data. Peabody [68] is a full-versioning system

for HDD that exposes the disk as an iSCSI target in the block layer.

However, privileged attackers can destroy Peabody backups, and the

drive cannot provide recovery service. Devecsery et al. developed

an eidetic system [38] for hard drives to recover past data within an

OS by leveraging information flows between processes. However,

it strongly relies on the software stack, making it vulnerable to

privileged attackers.

Device-level Versioning.Device-level methods deploy data ver-

sioning in the storage device. S4 [86] provides log-structured meta-

data versioning. However, it neglects the caching versioning and

cannot track data retention. FlashGuard [45] prevents the deletion

of potential victim data from privileged ransomware. However, it

cannot protect data fromnon-read deletion, such aswiper attacks [8].

RSSD [79] offloads versions to remote cloud providers as they are

cheaper and provide more storage space. However, it requires the

SSD to provide in-storage ethernet, increasing financial cost. More-

over, the SSDprice is continuously dropping [20],mitigating the cost

of local SSDs compared to cloud storage. Finally, the cloud storage

enlarges the TCBwith the risk of data loss [16] and cannot be trusted

in some cases [58].

11 Conclusion
LAST is an ordered versioning system that retains data history in

the storage and allows users to manage the maintained versions

securely. LAST considers DRAM in versioning SSDs and stores the

overwriting data independently to track the invalidation sequence

for the reclamation of GC.We evaluate LAST across multiple real-

world workloads and compare it with existing SSDs; LAST ensures

high availability of versioned data without significant overhead.

Acknowledgement
We would like to thank anonymous reviewers for their insightful

feedback, helping us to improve our work. This work was partially

supported by NSF CNS-1815883 and CNS-2055014.

References
[1] Bloom Filter Calculator. https://hur.st/bloomfilter/.

[2] C++ Bloom Filter Library. http://www.partow.net/programming/bloomfilter/in

dex.html.

[3] Flexible I/O Tester. https://github.com/axboe/fio.

[4] How to Escalate Privileges in Linux, Privilege Escalation Techniques. https:

//systemweakness.com/how-to-escalate-privileges- in- linux-privilege-

escalation-techniques-70c92499ae45.

[5] LibLZF. http://oldhome.schmorp.de/marc/liblzf .html.

[6] NILFS: Continuous Snapshotting Filesystem for Linux. https://nilfs.sourceforge.

io/en/index.html.

[7] Understanding Privilege Escalation and 5 Common Attack Techniques. https:

//www.cynet.com/network-attacks/privilege-escalation/#:~:text=Privilege%2

0escalation%20is%20a%20type,gaining%20access%20to%20a%20system.

[8] New ZeroCleareWiper Malware Used in Targeted Attacks. https://duo.com/deci

pher/new-zerocleare-wiper-malware-used-in-targeted-attacks, 2019.

[9] Iran May Deploy Wiper Malware in Response to U.S. Military Strike, Experts

Warn. https://spectrum.ieee.org/tech-talk/telecom/security/iran-wiper-

malware-cybersecurity-us-military-strike-news-experts-warning, 2020.

[10] Monitoring Snapshot Space Consumption with Pure Storage FlashArray. https:

//blog.purestorage.com/purely- technical/monitoring-snapshot- space-

consumption-with-pure-storage-flasharray/, 2020.

[11] Trim/deallocation and garbage collection: The science of reclaiming ssd storage

space. https://www.atpinc.com/blog/how-trim-ssd-works-to-free-storage-

space, 2020.

[12] Alibaba Block Traces. https://github.com/alibaba/block-traces, 2022.

[13] 980 PRO PCIe 4.0 NVMe SSD 1TB. https://semiconductor.samsung.com/us/con

sumer-storage/internal-ssd/980pro/, 2023.

[14] CVE - CVE. https://cve.mitre.org/index.html, 2023.

[15] Data retention periods and their impact in analyzing user behavior. https:

//www.smartlook.com/blog/data-retention-period-user-behavior-analysis/#:

~:text=Data%20retention%20and%20data%20retention%20periods,-In%20analy

tics%20tools&text=Typically%2C%20the%20minimum%20data%20retention,da

ta%20retention%20timeframe%2C%20the%20better, 2023.

[16] Is Cloud Storage Data Loss Possible? According to Microsoft, Yes It Is. https:

//weareproactive.com/cloud-storage-data-loss-is-possible/, 2023.

[17] Largest SSDs and hard drives of 2023: the biggest internal, portable and external

storage devices you can buy. https://www.techradar.com/best/large-hard-

drives-and-ssds, 2023.

[18] Samsung 870 QVO SATA 2.5 SSD. https://semiconductor.samsung.com/consum

er-storage/internal-ssd/870qvo/, 2023.

[19] Samsung970EVOPlusSSDReview:MoreLayersBringsMorePerformance. https:

//www.tomshardware.com/reviews/samsung-970-evo-plus-ssd,5608.html,

2023.

[20] Sorry Storage Makers But Falling SSD Prices Show No Signs Of Slowing Down

This Summer. https://hothardware.com/news/falling-ssd-prices-show-no-

signs-slowing-down, 2023.

[21] Supercapacitors have the power to save you from data loss. https://www.thereg

ister.com/2014/09/24/storage_supercapacitors/, 2023.

[22] What is a USB security key, and how do you use it? https://www.tomsguide.co

m/news/usb-security-key, 2023.

[23] What Is QLC SSD? https://www.purestorage.com/knowledge/what-is-qlc-

flash.html, 2023.

https://hur.st/bloomfilter/
http://www.partow.net/programming/bloomfilter/index.html
http://www.partow.net/programming/bloomfilter/index.html
https://github.com/axboe/fio
https://systemweakness.com/how-to-escalate-privileges-in-linux-privilege-escalation-techniques-70c92499ae45
https://systemweakness.com/how-to-escalate-privileges-in-linux-privilege-escalation-techniques-70c92499ae45
https://systemweakness.com/how-to-escalate-privileges-in-linux-privilege-escalation-techniques-70c92499ae45
http://oldhome.schmorp.de/marc/liblzf.html
https://nilfs.sourceforge.io/en/index.html
https://nilfs.sourceforge.io/en/index.html
https://www.cynet.com/network-attacks/privilege-escalation/#:~:text=Privilege%20escalation%20is%20a%20type,gaining%20access%20to%20a%20system.
https://www.cynet.com/network-attacks/privilege-escalation/#:~:text=Privilege%20escalation%20is%20a%20type,gaining%20access%20to%20a%20system.
https://www.cynet.com/network-attacks/privilege-escalation/#:~:text=Privilege%20escalation%20is%20a%20type,gaining%20access%20to%20a%20system.
https://duo.com/decipher/new-zerocleare-wiper-malware-used-in-targeted-attacks
https://duo.com/decipher/new-zerocleare-wiper-malware-used-in-targeted-attacks
https://spectrum.ieee.org/tech-talk/telecom/security/iran-wiper-malware-cybersecurity-us-military-strike-news-experts-warning
https://spectrum.ieee.org/tech-talk/telecom/security/iran-wiper-malware-cybersecurity-us-military-strike-news-experts-warning
https://blog.purestorage.com/purely-technical/monitoring-snapshot-space-consumption-with-pure-storage-flasharray/
https://blog.purestorage.com/purely-technical/monitoring-snapshot-space-consumption-with-pure-storage-flasharray/
https://blog.purestorage.com/purely-technical/monitoring-snapshot-space-consumption-with-pure-storage-flasharray/
https://www.atpinc.com/blog/how-trim-ssd-works-to-free-storage-space
https://www.atpinc.com/blog/how-trim-ssd-works-to-free-storage-space
https://github.com/alibaba/block-traces
https://semiconductor.samsung.com/us/consumer-storage/internal-ssd/980pro/
https://semiconductor.samsung.com/us/consumer-storage/internal-ssd/980pro/
https://cve.mitre.org/index.html
https://www.smartlook.com/blog/data-retention-period-user-behavior-analysis/#:~:text=Data%20retention%20and%20data%20retention%20periods,-In%20analytics%20tools&text=Typically%2C%20the%20minimum%20data%20retention,data%20retention%20timeframe%2C%20the%20better
https://www.smartlook.com/blog/data-retention-period-user-behavior-analysis/#:~:text=Data%20retention%20and%20data%20retention%20periods,-In%20analytics%20tools&text=Typically%2C%20the%20minimum%20data%20retention,data%20retention%20timeframe%2C%20the%20better
https://www.smartlook.com/blog/data-retention-period-user-behavior-analysis/#:~:text=Data%20retention%20and%20data%20retention%20periods,-In%20analytics%20tools&text=Typically%2C%20the%20minimum%20data%20retention,data%20retention%20timeframe%2C%20the%20better
https://www.smartlook.com/blog/data-retention-period-user-behavior-analysis/#:~:text=Data%20retention%20and%20data%20retention%20periods,-In%20analytics%20tools&text=Typically%2C%20the%20minimum%20data%20retention,data%20retention%20timeframe%2C%20the%20better
https://www.smartlook.com/blog/data-retention-period-user-behavior-analysis/#:~:text=Data%20retention%20and%20data%20retention%20periods,-In%20analytics%20tools&text=Typically%2C%20the%20minimum%20data%20retention,data%20retention%20timeframe%2C%20the%20better
https://weareproactive.com/cloud-storage-data-loss-is-possible/
https://weareproactive.com/cloud-storage-data-loss-is-possible/
https://www.techradar.com/best/large-hard-drives-and-ssds
https://www.techradar.com/best/large-hard-drives-and-ssds
https://semiconductor.samsung.com/consumer-storage/internal-ssd/870qvo/
https://semiconductor.samsung.com/consumer-storage/internal-ssd/870qvo/
https://www.tomshardware.com/reviews/samsung-970-evo-plus-ssd,5608.html
https://www.tomshardware.com/reviews/samsung-970-evo-plus-ssd,5608.html
https://hothardware.com/news/falling-ssd-prices-show-no-signs-slowing-down
https://hothardware.com/news/falling-ssd-prices-show-no-signs-slowing-down
https://www.theregister.com/2014/09/24/storage_supercapacitors/
https://www.theregister.com/2014/09/24/storage_supercapacitors/
https://www.tomsguide.com/news/usb-security-key
https://www.tomsguide.com/news/usb-security-key
https://www.purestorage.com/knowledge/what-is-qlc-flash.html
https://www.purestorage.com/knowledge/what-is-qlc-flash.html

CCS ’25, October 13–17, 2025, Taipei Weidong Zhu, Carson Stillman, Sara Rampazzi, and Kevin R. B. Butler

[24] Ssd security firmwares features tech brief. https://www.datasheetarchive.com/w

hats_new/1c1a884377ab1954f2efc54b614636ec.html, 2024.

[25] Jinwoo Ahn, Junghee Lee, Yungwoo Ko, DonghyunMin, Jiyun Park, Sungyong

Park, and Youngjae Kim. Diskshield: A data tamper-resistant storage for intel sgx.

In Proceedings of the 15th ACMAsia Conference on Computer and Communications
Security (ASIACCS), 2020.

[26] Jean-Philippe Aumasson, Samuel Neves, ZookoWilcox-O’Hearn, and Christian

Winnerlein. Blake2: simpler, smaller, fast as md5. https://www.blake2.net/blake

2.pdf, 2013.

[27] SungHa Baek, Youngdon Jung, Aziz Mohaisen, Sungjin Lee, and DaeHun Nyang.

SSD-Insider: Internal Defense of Solid-State Drive against Ransomware with

Perfect Data Recovery. In 38th International Conference on Distributed Computing
Systems (ICDCS), 2018.

[28] M.Bozyigit andM.Wasiq. User-levelprocesscheckpointandrestore formigration.

SIGOPS Operting Systems Review, 2001.
[29] Christopher Burgess. Contractor hacks former employer, destroys and corrupts

data. https://www.csoonline.com/article/564205/contractor-hacks-former-

employer-destroys-and-corrupts-data.html, 2018.

[30] Li-Pin Chang. On efficient wear leveling for large-scale flash-memory storage

systems. In Proceedings of the 2007 ACM Symposium on Applied Computing (SAC),
2007.

[31] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL: A Content-Aware flash

translation layer enhancing the lifespan of flash memory based solid state drives.

In 9th USENIX Conference on File and Storage Technologies (FAST), 2011.
[32] Ann Chervenak, Vivekanand Vellanki, and Zack Kurmas. Protecting file systems:

A survey of backup techniques. 1998.

[33] Brian Cornell, Peter A. Dinda, and Fabián E. Bustamante. Wayback: A user-level

versioning file system for linux. InUSENIX Annual Technical Conference (USENIX
ATC), 2004.

[34] CORVUS. Q4Travelers’ CyberThreat Report: RansomwareGoes Full Scale. https:

//www.corvusinsurance.com/blog/q4-2024-travelers-cyber-threat-report/,

2025.

[35] Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: Making

backup cheap and easy. In 5th Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[36] Biplob Debnath, Sudipta Sengupta, and Jin Li. ChunkStash: Speeding up inline

storage deduplication using flash memory. In 2010 USENIX Annual Technical
Conference (USENIX ATC), 2010.

[37] Peter J Denning. The locality principle. Communications of the ACM, 2005.

[38] David Devecsery,Michael Chow, XianzhengDou, Jason Flinn, and PeterM. Chen.

Eidetic systems. In 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI), 2014.

[39] Clare Duffy. Colonial Pipeline attack: A ’wake up call’ about the threat of ran-

somware. https://www.cnn.com/2021/05/16/tech/colonial-ransomware-

darkside-what-to-know/index.html, 2021.

[40] Trusted Computing Group. Trusted PlatformModule (TPM) Summary. https://tr

ustedcomputinggroup.org/resource/trusted-platform-module-tpm-summary/,

2025.

[41] Jiayang Guo, Yiming Hu, Bo Mao, and Suzhen Wu. Parallelism and garbage

collection aware i/o scheduler with improved ssd performance. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2017.

[42] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. Dftl: A flash translation

layer employing demand-based selective caching of page-level addressmappings.

In Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2009.

[43] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooyoung Hwang. Zns+:

Advanced zoned namespace interface for supporting in-storage zone compaction.

In 15th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21), 2021.

[44] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. The Unwritten Contract of Solid State Drives. In European Conference
on Computer Systems (EuroSys), 2017.

[45] JianHuang, JunXu,XinyuXing, PengLiu, andMoinuddinK.Qureshi. Flashguard:

Leveraging intrinsic flash properties to defend against encryption ransomware.

In 2017ACMSIGSACConference onComputer andCommunications Security (CCS),
2017.

[46] PingHuang, Ke Zhou, HuaWang, and ChunHua Li. Bvssd: Build built-in version-

ing flash-based solid state drives. In Proceedings of the 5th Annual International
Systems and Storage Conference (SYSTOR), 2012.

[47] Shehbaz Jaffer, Kaveh Mahdaviani, and Bianca Schroeder. Improving the reliabil-

ity of next generation SSDs usingWOM-v codes. In 20th USENIX Conference on
File and Storage Technologies (FAST 22), 2022.

[48] Song Jiang, Lei Zhang, XinHao Yuan, Hao Hu, and Yu Chen. S-ftl: An efficient

address translation for flash memory by exploiting spatial locality. In 2011 IEEE
27th Symposium on Mass Storage Systems and Technologies (MSST), 2011.

[49] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha. LRU-WSR: integration of LRU and

writes sequence reordering for flash memory. In IEEE Transactions on Consumer
Electronics, 2008.

[50] Rajat Kateja, AnirudhBadam, SriramGovindan, Bikash Sharma, andGregGanger.

Viyojit: Decoupling battery and dram capacities for battery-backed dram. In

Proceedings of the 44th Annual International Symposium on Computer Architecture
(ISCA), 2017.

[51] Amin Kharraz, Sajjad Arshad, Collin Mulliner, William Robertson, and Engin

Kirda. UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware.

In 25th USENIX Security Symposium (USENIX Security), 2016.
[52] Amin Kharraz and Engin Kirda. Redemption: Real-Time Protection Against

Ransomware at End-Hosts. In International Symposium on Research in Attacks,
Intrusions, and Defenses, (RAID), 2017.

[53] Hong Seok Kim, EyeeHyunNam, Ji Hyuck Yun, Sheayun Lee, and Sang LyulMin.

P-bms: A bad block management scheme in parallelized flash memory storage

devices. ACM Transactions on Embedded Computing Systems, 2017.
[54] Hyojun Kim and SeongjunAhn. Bplru: A buffermanagement scheme for improv-

ing randomwrites in flash storage. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST), 2008.

[55] JaehoKim, JongminLee, JongmooChoi,DongheeLee, andSamH.Noh. Improving

SSD reliability with RAID via Elastic Striping and Anywhere Parity. In 43rd
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2013.

[56] Ricardo Koller and Raju Rangaswami. I/O deduplication: Utilizing content simi-

larity to improve I/O performance. In 8th USENIX Conference on File and Storage
Technologies (FAST), 2010.

[57] Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel Egele. Pay-

Break:DefenseAgainstCryptographicRansomware. In15thACMAsiaConference
on Computer and Communications Security (ASIACCS), 2017.

[58] Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth,

Pramod Bhatotia, and Christof Fetzer. Pesos: Policy enhanced secure object

store. In Proceedings of the Thirteenth EuroSys Conference (EuroSys), 2018.
[59] Guy Laden, Paula Ta-Shma, Eitan Yaffe, andMichael Factor. Architectures for

controller based CDP. In 5th USENIX Conference on File and Storage Technologies
(FAST), 2007.

[60] Sungjin Lee and JihongKim. Improvingperformance and capacity of flash storage

devices by exploiting heterogeneity of mlc flash memory. IEEE Transactions on
Computers, 2014.

[61] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman,

Matias Bjørling, and Haryadi S. Gunawi. The CASE of FEMU: Cheap, accurate,

scalable and extensible flash emulator. In 16th USENIX Conference on File and
Storage Technologies (FAST), 2018.

[62] Qiao Li, Min Ye, Yufei Cui, Liang Shi, Xiaoqiang Li, Tei-Wei Kuo, and Chun Jason

Xue. Shaving retrieswith sentinels for fast read over high-density 3dflash. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2020.

[63] Haodong Lin, Jun Li, Zhibing Sha, Zhigang Cai, Yuanquan Shi, Balazs Gerofi, and

Jianwei Liao. Adaptive management with request granularity for dram cache

inside nand-based ssds. IEEE Transactions onComputer-AidedDesign of Integrated
Circuits and Systems, 2023.

[64] Haodong Lin, Zhibing Sha, Jun Li, Zhigang Cai, Balazs Gerofi, Yuanquan Shi, and

Jianwei Liao. Dram cache management with request granularity for nand-based

ssds. In Proceedings of the 51st International Conference on Parallel Processing
(ICPP), 2023.

[65] Weihua Liu, Fei Wu, Meng Zhang, Chengmo Yang, Zhonghai Lu, JiguangWan,

and Changsheng Xie. Deps: Exploiting a dynamic error prechecking scheme

to improve the read performance of ssd. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2021.

[66] NingfangMi, Alma Riska, Qi Zhang, Evgenia Smirni, and Erik Riedel. Efficient

management of idleness in storage systems. ACM Transactions on Storage (TOS),
2009.

[67] Microsoft. Microsoft Digital Defense Report 2022. https://query.prod.cms.rt.mi

crosoft.com/cms/api/am/binary/RE5bUvv?culture=en-us&country=us, 2022.

[68] C.B.MorreyandD.Grunwald. Peabody: the time travellingdisk. In 20th IEEE/11th
NASAGoddard Conference onMass Storage Systems and Technologies (MSST), 2003.

[69] Kiran-Kumar Muniswamy-Reddy, Charles P. Wright, Andrew Himmer, and Erez

Zadok. A versatile and user-oriented versioning file system. In 3rd USENIX
Conference on File and Storage Technologies (FAST), 2004.

[70] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write Off-

Loading: Practical Power Management for Enterprise Storage. In 6th USENIX
Conference on File and Storage Technologies (FAST), 2008.

[71] Nate Nelson. Iran APTs Tag Team Espionage, Wiper Attacks Against Israel &

Albania. https://www.darkreading.com/threat-intelligence/iran-apts-tag-team-

espionage-wiper-attacks-against-israel-and-albania, 2024.

[72] Security News. A new variant from Chaos Ransomware family surfaces. https:

//www.sonicwall.com/blog/a-new-variant-from-chaos-ransomware-family-

surfaces, 2023.

[73] Nomios. What is SamSam ransomware? https://www.nomios.com/resources/w

hat-is-samsam-ransomware/, 2024.

[74] Jonghyeok Park, Soyee Choi, Gihwan Oh, Soojun Im, Moon-Wook Oh, and Sang-

Won Lee. Flashalloc: Dedicating flash blocks by objects. Proceedings of the VLDB

https://www.datasheetarchive.com/whats_new/1c1a884377ab1954f2efc54b614636ec.html
https://www.datasheetarchive.com/whats_new/1c1a884377ab1954f2efc54b614636ec.html
https://www.blake2.net/blake2.pdf
https://www.blake2.net/blake2.pdf
https://www.csoonline.com/article/564205/contractor-hacks-former-employer-destroys-and-corrupts-data.html
https://www.csoonline.com/article/564205/contractor-hacks-former-employer-destroys-and-corrupts-data.html
https://www.corvusinsurance.com/blog/q4-2024-travelers-cyber-threat-report/
https://www.corvusinsurance.com/blog/q4-2024-travelers-cyber-threat-report/
https://www.cnn.com/2021/05/16/tech/colonial-ransomware-darkside-what-to-know/index.html
https://www.cnn.com/2021/05/16/tech/colonial-ransomware-darkside-what-to-know/index.html
https://trustedcomputinggroup.org/resource/trusted-platform-module-tpm-summary/
https://trustedcomputinggroup.org/resource/trusted-platform-module-tpm-summary/
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE5bUvv?culture=en-us&country=us
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE5bUvv?culture=en-us&country=us
https://www.darkreading.com/threat-intelligence/iran-apts-tag-team-espionage-wiper-attacks-against-israel-and-albania
https://www.darkreading.com/threat-intelligence/iran-apts-tag-team-espionage-wiper-attacks-against-israel-and-albania
https://www.sonicwall.com/blog/a-new-variant-from-chaos-ransomware-family-surfaces
https://www.sonicwall.com/blog/a-new-variant-from-chaos-ransomware-family-surfaces
https://www.sonicwall.com/blog/a-new-variant-from-chaos-ransomware-family-surfaces
https://www.nomios.com/resources/what-is-samsam-ransomware/
https://www.nomios.com/resources/what-is-samsam-ransomware/

Enabling Secure and Efficient Data Loss Prevention with a Retention-aware Versioning SSD CCS ’25, October 13–17, 2025, Taipei

Endowment, 2023.
[75] Allan Parker and Glen Lam. Partial page programming of multi level flash, 2004.

Patent No. US6836432B1, Filed Feb. 11th., 2002, Issued Dec. 28th., 2004.

[76] Zachary Peterson and Randal Burns. Ext3cow: A time-shifting file system for

regulatory compliance. ACM Transaction on Storage (TOS), 2005.
[77] Portnox. A Closer Look at NotPetya. https://www.portnox.com/cybersecurity-

101/notpetya-attack/, 2017.

[78] Zhiwei Qin, YiWang, Duo Liu, Zili Shao, and YongGuan. Mnftl: An efficient flash

translation layer for mlc nand flash memory storage systems. In Proceedings of
the 48th Design Automation Conference (DAC), 2011.

[79] Benjamin Reidys, Peng Liu, and Jian Huang. Rssd: Defend against ransomware

with hardware-isolated network-storage codesign and post-attack analysis. In

Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2022.

[80] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a

log-structured file system. ACM Transactions on Computer Systems (TOCS), 1992.
[81] Samsung. Power loss protection (PLP): Protect your data against sudden power

loss. https://download.semiconductor.samsung.com/resources/others/Samsun

g_SSD_845DC_05_Power_loss_protection_PLP.pdf, 2014.

[82] Samsung. To be? or Not to be? Hold up capacitors in 2.5" MIL SSDs. https:

//www.storagesearch.com/zero-to-three-hold-up-times-in-mil-ssds.html#:~:

text=Power%20hold%20up%20time%20in%200%20to,in%20the%20event%20of%

20sudden%20power%20loss., 2015.

[83] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin R. B. Butler. Cryptolock

(and drop it): Stopping ransomware attacks on user data. In 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS), 2016.

[84] Kai Shen, Stan Park, and Men Zhu. Journaling of journal is (almost) free. In 12th
USENIX Conference on File and Storage Technologies (FAST), 2014.

[85] Ryan Soliven and Hitomi Kimura. Ransomware Actor Abuses Genshin Impact

Anti-Cheat Driver to Kill Antivirus. https://www.trendmicro.com/en_us/researc

h/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-

antivirus.html, 2022.

[86] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules,

and Gregory R. Ganger. Self-securing storage: Protecting data in compromised

system. In Proceedings of the 4th Conference on Symposium on Operating System
Design and Implementation (OSDI), 2000.

[87] Sriram Subramanian, Swaminathan Sundararaman, Nisha Talagala, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Snapshots in a flash with iosnap.

In 9th European Conference on Computer Systems (EuroSys 2014), 2014.
[88] HuiSun, ShangshangDai, JianzhongHuang, andXiaoQin. Co-active:Aworkload-

aware collaborative cache management scheme for nvme ssds. IEEE Transactions
on Parallel and Distributed Systems, 2021.

[89] Hui Sun, Shangshang Dai, Jianzhong Huang, Yinliang Yue, and Xiao Qin. Dac: A

dynamic active and collaborative cache management scheme for solid state disks.

Journal of Systems Architecture, 2023.
[90] Arash Tavakkol, JuanGómez-Luna,Mohammad Sadrosadati, Saugata Ghose, and

OnurMutlu. MQSim: A framework for enabling realistic studies ofmodernMulti-

Queue SSD devices. In 16th USENIX Conference on File and Storage Technologies
(FAST 18), 2018.

[91] Arash Tavakkol, Pooyan Mehrvarzy, Mohammad Arjomand, and Hamid Sarbazi-

Azad. Performance evaluation of dynamic page allocation strategies in ssds.

ACMTransactions onModeling and Performance Evaluation of Computing Systems,
2016.

[92] Chainalysis Team. 35% Year-over-Year Decrease in Ransomware Payments, Less

than Half of Recorded Incidents Resulted in Victim Payments. https://www.chai

nalysis.com/blog/crypto-crime-ransomware-victim-extortion-2025/, 2025.

[93] L. Toka, M. Dell’Amico, and P. Michiardi. Online data backup: A peer-assisted

approach. In 2010 IEEE Tenth International Conference on Peer-to-Peer Computing
(P2P), 2010.

[94] PeiyingWang, Shijie Jia, BoChen, LuningXia, and Peng Liu. MimosaFTL:Adding

Secure and Practical Ransomware Defense Strategy to Flash Translation Layer.

In 10th ACMConference on Data and Application Security and Privacy (CODASPY),
2019.

[95] S. Wang, Z. Lin, S. Wu, H. Jiang, J. Zhang, and B. Mao. Learnedftl: A learning-

based page-level ftl for reducing double reads in flash-based ssds. In 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA),
2024.

[96] XiaohaoWang, Yifan Yuan, You Zhou, Chance C. Coats, and Jian Huang. Project

almanac: A time-traveling solid-state drive. In 14th European Conference on
Computer Systems (EuroSys), 2019.

[97] JakeWires and Michael J. Feeley. Secure file system versioning at the block level.

In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems (EuroSys), 2007.

[98] SuzhenWu, Jindong Zhou, Weidong Zhu, Hong Jiang, Zhijie Huang, Zhirong

Shen, and Bo Mao. Ead: a collision-free and high performance deduplication

scheme for flash storage systems. In 2020 IEEE 38th International Conference on
Computer Design (ICCD), 2020.

[99] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min Fu,

Yucheng Zhang, and Yukun Zhou. A comprehensive study of the past, present,

and future of data deduplication. Proceedings of the IEEE, 2016.
[100] Weijun Xiao, Jin Ren, and Qing Yang. A case for continuous data protection at

block level in disk array storages. IEEE Transactions on Parallel and Distributed
Systems, 2009.

[101] Jeseong Yeon, Minseong Jeong, Sungjin Lee, and Eunji Lee. RFLUSH: Rethink the

flush. In 16th USENIX Conference on File and Storage Technologies (FAST 18), 2018.
[102] Tal Zamir. How to Detect and Prevent Dropper Malware Attacks. https://pe

rception-point.io/guides/malware/understanding-dropper-malware-types-

examples-detection-and-prevention/, 2024.

[103] Chijin Zhou, Lihua Guo, Yiwei Hou, ZhenyaMa, Quan Zhang, MingzheWang,

Zhe Liu, and Yu Jiang. Limits of i/o based ransomware detection: An imitation

based attack. In 2023 IEEE Symposium on Security and Privacy (SP), 2023.
[104] Weidong Zhu and Kevin R. B. Butler. Nasa: Nvm-assisted secure deletion for flash

memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2022.

[105] Weidong Zhu, Grant Hernandez, Washington Garcia, Dave (Jing) Tian, Sara

Rampazzi, and Kevin R. B. Butler. Minding the semantic gap for effective storage-

based ransomware defense. In Proceedings of the 38th International Conference on
Massive Storage Systems and Technology (MSST), 2024.

https://www.portnox.com/cybersecurity-101/notpetya-attack/
https://www.portnox.com/cybersecurity-101/notpetya-attack/
https://download.semiconductor.samsung.com/resources/others/Samsung_SSD_845DC_05_Power_loss_protection_PLP.pdf
https://download.semiconductor.samsung.com/resources/others/Samsung_SSD_845DC_05_Power_loss_protection_PLP.pdf
https://www.storagesearch.com/zero-to-three-hold-up-times-in-mil-ssds.html#:~:text=Power%20hold%20up%20time%20in%200%20to,in%20the%20event%20of%20sudden%20power%20loss.
https://www.storagesearch.com/zero-to-three-hold-up-times-in-mil-ssds.html#:~:text=Power%20hold%20up%20time%20in%200%20to,in%20the%20event%20of%20sudden%20power%20loss.
https://www.storagesearch.com/zero-to-three-hold-up-times-in-mil-ssds.html#:~:text=Power%20hold%20up%20time%20in%200%20to,in%20the%20event%20of%20sudden%20power%20loss.
https://www.storagesearch.com/zero-to-three-hold-up-times-in-mil-ssds.html#:~:text=Power%20hold%20up%20time%20in%200%20to,in%20the%20event%20of%20sudden%20power%20loss.
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://www.chainalysis.com/blog/crypto-crime-ransomware-victim-extortion-2025/
https://www.chainalysis.com/blog/crypto-crime-ransomware-victim-extortion-2025/
https://perception-point.io/guides/malware/understanding-dropper-malware-types-examples-detection-and-prevention/
https://perception-point.io/guides/malware/understanding-dropper-malware-types-examples-detection-and-prevention/
https://perception-point.io/guides/malware/understanding-dropper-malware-types-examples-detection-and-prevention/

	Abstract
	1 Introduction
	2 Case Study of Data Loss
	2.1 Encryption Ransomware
	2.2 Wiper Malware
	2.3 Insider Threats
	2.4 Learned Lessons

	3 Flash-based SSDs
	4 Motivation
	4.1 Host-Level vs Device-Level Versioning
	4.2 Characterizing Data Retention in Versioning SSDs
	4.3 Characterizing Cache Versioning in SSDs
	4.4 Why LAST?

	5 Threat Model
	6 LAST Design
	6.1 LAST Overview
	6.2 Versioning Cache Management
	6.3 Order-aware GC
	6.4 Lineage-preserved Deduplication
	6.5 Metadata of Versions
	6.6 Version Manager
	6.7 Implementation

	7 Security Analysis
	8 Evaluation
	8.1 Experimental Setup
	8.2 Metadata Size Testing
	8.3 Performance Testing
	8.4 Lifetime Testing
	8.5 Version Availability and Manager Testing

	9 Discussion
	10 Related Work
	11 Conclusion
	References

