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Abstract

Cyberattacks resulting in data loss remain a critical concern in mod-
ern data protection. To mitigate such threats, data versioning has
been introduced to recover compromised data by reverting the stor-
age to a prior uncompromised state. However, most current ver-
sioning solutions are implemented at the host level (e.g., within the
operating system), making them vulnerable to adversaries with es-
calated privileges who can compromise OS-level protections. Thus,
device-level methods have been proposed to shift the versioning
logic to hardware-isolated storage devices outside the untrusted OS.
Unfortunately, these solutions suffer from limited retention times
for historical data, narrowing the protection window and leaving
systems exposed to persistent attacks. In this paper, we propose
LAST, an invaLidation-Aware VerSioning sysTem for flash-based
SSDs, that enables data versioning with enhanced awareness of data
retention time, ensuring long-term availability of historical data with
small performance impact. LAST modifies the SSD’s flash translation
layer (FTL) to retain the data invalidation order for tracking data
retention time. Then, it leverages an ordered garbage collection (GC)
that always reclaims versioned data with the longest retention time,
as determined by the invalidation sequence. Therefore, this approach
prevents the premature deletion of data with shorter retention, sig-
nificantly extending the protection window and reducing the risk
of data loss. Evaluated under various real-world workloads, LAST
achieves a small latency overhead of 1.5% over a regular SSD while
maintaining data history for up to 126.4 days with an average of 52.6
days. This significantly outperforms the average retention of current
versioning methods by 61.4% at least and 165.9% at most, enhancing
the protection window against data loss from cyberattacks.
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1 Introduction

Modern computer systems suffer from malicious attacks resulting
in data loss or downtime, causing significant financial and oper-
ational disruption. For example, the 2021 ransomware attack on
Colonial Pipeline encrypted essential systems, shutting down fuel
delivery for days and leading to a severe gas shortage on the U.S.
East Coast [39]. Beyond external attacks, malicious insiders with
authorized access pose equally severe risks, causing catastrophic
damage to data integrity, finances, and corporate reputation [29].

To combat these threats, various techniques, such as backups [35],
process checkpoints [28], and snapshots [6, 87], have been widely
used to preserve the previous storage state to recover the system
from potential data corruptions. However, these techniques capture
historical data only at discrete intervals, leaving gaps between snap-
shots. In contrast, a versioning system offering Continuous Data
Protection (CDP) retains unlimited versions of data, allowing the
storage to revert to any past state. This is particularly critical when
facing adversaries who can corrupt data unpredictably at any time,
as traditional methods may only capture snapshots of data after the
compromise has occurred. Thus, we focus on CDP to protect users’
data, consistent with prior versioning works [46, 59, 86, 96, 100].

An effective versioning system must address three critical aspects
to ensure robust data protection:

(1) Rootkit Resistance. Recent attacks [45, 79, 86] have shown
how retained data versions can be compromised by system breaches
with privilege escalation. With these escalated privileges, attackers
can disable the data protection processes and manipulate victim data.
Therefore, a trustworthy versioning system should be enabled to
defend against rootkit-level data corruptions.

(2) Long Retention for Historical Data. Providing long re-
tention of historical data is desired by current versioning sys-
tems [15, 45, 79, 86, 96]. It guarantees data availability for remediat-
ing potential data compromise. For instance, advanced ransomware
presents detection challenges due to its ability to mimic legitimate
applications [103], indicating that the versioning system should pro-
vide longer data retention for the prolonged detection time. More-
over, some cyber attacks [102] can remain hidden in the victim’s
system for extended periods, even for months [73], before being
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detected. Thus, data breaches may have occurred in the distant past,
and providing long data retention can mitigate this threat.

(3) Intact Historical Files. Since computer data is typically
stored in file form, it is crucial to ensure the completeness and in-
tegrity of versioned files. Partial loss or early deletion of historical
files — called “shattered files” — can render recovered files unusable.
For example, losing just the header information of a historical PDF
file can make the entire file unusable.

Current versioning systems fall short in addressing these require-
ments, limiting their effectiveness in preventing data loss. Many
current versioning approaches are employed in the host OS, called
host-level methods [67, 76, 100]. However, the host system contains
a large trusted computing base (TCB), leaving a large attack sur-
face and making it vulnerable to privilege escalation vulnerabilities.
In 2023 alone, 5870 vulnerabilities involving privilege escalation
were reported (CVE-assigned) [14], highlighting significant risks for
host-level solutions.

To remedy these limitations, others have proposed device-level
versioning [46, 96] to provide a robust defense against OS compro-
mise. These approaches are implemented within storage devices,
isolated from the potentially compromised OS by limited interfaces.
Flash-based SSDs are among the most popular storage devices used
by existing device-level solutions both because of their prevalence
and the fact they perform out-of-place writes rather than directly
overwriting data on the medium, providing an inherent versioning
functionality [96]. When data is written to the SSD, device-level
approaches retain it until the storage space is insufficient to serve
new writes, and garbage collection is triggered.

Despite the improvement, existing device-level approaches still
suffer from critical limitations:

(1) Degraded Data Retention. While data versioning aims to
maintain all the historical data in the device, the limited storage
capacity indicates that the versioning system must reclaim the his-
torical data periodically to release the storage space for future data
operations. Without carefully selecting which historical data to erase,
these methods can prematurely delete data that could be crucial for
recovery. For example, reclaiming a historical data page with a short
retention time degrades the protection of historical data when there
is a historical data with longer retention time existed. While current
versioning SSDs [79, 96] recognize this threat, they cannot track the
complete retention time order of data versions. This limitation results
in the early deletion of versioned data and a diminished capability
to recover the system following a data breach.

(2)Incomplete Historical Files. Storage devices lack knowledge
of file-level relationships between the data arrived at the storage and
files because they operate at the block level. Moreover, “removed”
but versioned data in files are typically generated in continuous
time [37, 48] due to spatial locality, which indicates that data adjacent
to arecently accessed address will likely be accessed shortly. Since
existing versioning SSDs [46, 79, 96] cannot be fully aware of the
data retention sequence, they can occasionally erase portions of a
versioned file early, leading to shattered files.

(3) Data Loss Due to Architectural Defects. The DRAM data
cache has been widely used in modern SSDs [18, 54, 88] to absorb
I/O requests for high performance. However, the data cache in the
SSD can cause the loss of data versions because a write hit to the
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data cache can overwrite data that has been recently cached but not
yet written to storage.

To address these limitations, we propose LAST, a secure and
efficient SSD-based versioning approach. The core idea behind LAST
is simple but effective: when historical data reclamation is required, it
always deletes data versions with the longest retention duration first.
To achieve this target, LAST distinguishes between newly written
data (first-time) and the data (overwriting) that overwrites existing
data, storing each type separately in the storage based on their arrival
times. Since the retention time of versioned data depends on when
dataisinvalidated and when it is truly deleted from storage, the order
in which overwriting data is stored reflects the invalidation sequence
and thereby represents the retention time. Therefore, LAST leverages
the order-maintained overwriting data to select the historical data
with the longest retention time during the reclamation.

LAST also avoids data loss in the DRAM data cache due to the
cache hit. Unlike the traditional overwrite-upon-hit caching method,
LAST disables the in-place update operations in the data cache and
stores the incoming data in an out-of-place manner. This ensures
that the historical data cannot be deleted or overwritten in the cache.
Additionally, since maintaining the historical data introduces addi-
tional storage overhead, LAST further introduces the deduplication
technique to effectively remove the duplicated data copies in the
storage, improving storage efficiency.

With these enhancements, LAST offers significant advantages
over existing methods: (1) It maximizes the retention of historical
data because the recently deleted versioned data can be preserved
longer, avoiding premature removal. (2) Due to spatial locality, file-
related historical data is typically generated consecutively. LAST
reclaims file data based on its original invalidation order, ensuring
files remain intact and avoiding shattered files. (3) LAST’s cache
design prevents accidental version loss inherent to conventional
DRAM caching techniques.

Our evaluation demonstrates that LAST significantly improves
historical data retention, outperforming existing device-level solu-
tions by 61.4% at minimum and 165.9% at maximum. This substantial
improvement in retention is essential for effective recovery from so-
phisticated, long-hidden cyberattacks. In summary, this work makes
the following contributions:

e We perform an in-depth analysis of data versioning in SSDs
equipped with DRAM cache and characterize data retention in exist-
ing versioning SSDs to give evidence of why they are insufficient in
preserving data versions.

e We propose LAST to protect the versioning system from OS
compromises. It enables versioning data in the cache with a trivial
overhead of 1.5% compared to a regular SSD.

e We provide ordered versioning with LAST that leverages data
invalidation sequences to avoid shattered files and achieve long
retention time, outperforming existing versioning SSDs by 61.4% at
minimum and 165.9% at maximum.

e We implement a prototype of LAST in an SSD emulator [61].
Our evaluation demonstrates that LAST can improve data versions’
availability with minimal performance degradation compared to
existing versioning SSD methods.
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2 Case Study of Data Loss

In this section, we explore critical attack scenarios that can lead to
data loss. Building on these scenarios, we identify key insights that
highlight essential factors for effective data loss prevention.

2.1 Encryption Ransomware

Ransomware is a high-profile malware that encrypts user files until
aransom is paid. These attacks can disrupt critical services across
government agencies, businesses, and individual consumers. Even
worse, ransomware has a low entry barrier for attackers. In 2024, the
number of ransomware victims worldwide rose by 15% compared
to the previous year [34], while global ransom payments increased
by 35% [92]. Although traditional ransomware typically follows a
straightforward pattern of file access and encryption, recent variants
have shown increasingly sophisticated patterns:

(1) Recent research [27, 45, 94] demonstrates that some ran-
somware attacks can operate at the rootkitlevel, undermining typical
detection and backup strategies. They can disable existing defense
mechanisms or bypass detection entirely. For example, with esca-
lated privileges, it might read or modify data directly on the device
rather than interact with files [105]. As most existing solutions rely
on file access behavior to identify threats [51, 52, 83], this approach
circumvents detection even if the ransomware does not disable the
operating system’s defenses.

(2) Attackers can also adapt ransomware to outmaneuver spe-
cific defenses. For example, a common detection technique focuses
on changes in data entropy, as encryption raises the randomness
of file contents. However, emerging ransomware variants, such as
CHAOS [72], exploit encoding methods (e.g., Base64) to lower en-
tropy, making it harder for existing mechanisms to identify ran-
somware activity and prolonging the attack time before discovery.
Takeaway. Considering advanced ransomware that can operate at
the rootkit level and adapt to evade detection, immediate detection
and termination are not guaranteed. Therefore, an effective defense
strategy must include a robust data recovery mechanism and store
historical data for as long as possible to facilitate data recovery if an
attack happens.

2.2 Wiper Malware

Unlike ransomware attacks, wiper malware is designed purely for
destruction rather than seeking financial reward. Attackers often
remain silent until the compromised system fails, causing severe
operational disruptions. For instance, in 2022, Russian-based groups
performed wiper attacks on Ukrainian government systems, inter-
rupting critical infrastructure and business activities. Unlike many
destructive cyberattacks, wiper attacks have distinctive characteris-
tics:

(1) Since these attacks aim solely to destroy data, they frequently
target high-value systems whose compromise has significant societal
or national security consequences.

(2) Wiper attacks tend to be large in scale and highly coordinated,
often initiated by governments or large cybercriminal organizations,
such as the NotPetya malware [77] and Iran Wiper [71].
Takeaway. Wiper attacks pose a severe threat to critical infrastruc-
tures and organizations where data availability is critical. Once the
attack is activated, it can erase data immediately. Defending against
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such attacks relies heavily on effective data recovery, making com-
prehensive versioning essential. Therefore, maintaining historical
data provides the foundation for robust data loss prevention.

2.3 Insider Threats

While malware is the primary cause of data loss, malicious insid-
ers with legitimate system access can lead to significant negative
outcomes as well. Moreover, such attacks are especially difficult to
counteract for the following reasons:

(1)Since insiders are typically trusted users, it may take along time
to discover such intentional data corruption. For example, a former
IT employee of NCS conducted an insider attack for 2.5 years, wiping
180 virtual servers and causing $678,000 in financial losses. Moreover,
organizations could only realize they have been compromised after
substantial damage has already been done.

(2) Insiders typically possess extensive knowledge of the system

withy high-level privileges. They can easily bypass security controls
and blend malicious actions with normal activities. Consequently,
insider-induced data loss is more difficult to detect.
Takeaway. Although insider threats are less common than malware,
they pose a severe challenge for data loss prevention. Insider threats
can remain hidden in a system for extended periods, and insiders’
elevated privileges allow them to evade many host-level defenses.
As with rootkit-level attacks, it is crucial to preserve historical data
for possible data recovery while ensuring strong isolation measures
that prevent unauthorized access to defense mechanisms.

2.4 Learned Lessons

Real-world attack scenarios underscore the urgency of designing
robust and secure data loss prevention strategies that provide the
following guarantees. (1) All historical data should be retained, as at-
tacks can corrupt any part of data at any point in time. This approach
maximizes the availability of historical data for potential recovery.
(2) The protection system itself should be isolated from vulnerable
modules in the host environment to avoid being compromised. (3)
Since some threats can persist for a long period of time, historical
data must be kept as long as possible to support recovery even long
after an initial attack.

Based on these observations, this paper proposes a solution that
maximizes historical data retention and defends against advanced
attacks—including those with rootkit-level privileges, thereby pro-
viding robust data loss prevention.

3 Flash-based SSDs

This section provides necessary background information on flash-
based SSDs.

Overview. Flash-based SSDs are replacing traditional hard disk
drives (HDDs) for their high performance and energy efficiency [44].
Flash memory operates write and read requests at page granularity
(e.g., 4KB). These pages are grouped into a flash block. Since flash
memory erases data at block granularity, it performs overwrites
in an out-of-place manner. When the ratio of free pages reaches a
threshold (e.g., 20%), garbage collection (GC) employed in the flash
translation layer (FTL) reclaims invalidated data by migrating valid
pages to other free blocks and erasing them. Since flash memory has
limited program/erase cycles [55], FTL includes wear-leveling and
bad block management to improve the SSD’s lifetime.
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Figure 1: Retention Drop Factor (RDF) of erased pages when
testing a random write workload of FIO. LAST reaches optimal
retention time compared to existing versioning SSDs.
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Figure 2: Retained version ratio of deleted files after a random
write. LAST reaches 100% ratio compared to the Baseline SSD
and current versioning SSDs (BVSSD and TimeSSD).

Flash Memory Data Layout. Flash-based SSDs are structured for
high parallelism. They use bus channels to connect multiple flash
chips that process I/Os independently. Each chip contains flash dies,
offering die-level parallelism, and each die consists of planes made up
of blocks. Finally, planes, the lowest level of parallelism in SSDs, can
process I/Os simultaneously when requests target the same address.
Address Translation. Address translation interprets logical page
addresses (LPAs) derived from logical block addresses (LBAs)in the
OS to physical page addresses (PPAs) in flash memory using a map-
ping table [42, 48]. Page-level mapping has been widely used in light
of its high performance [42, 74]. However, DRAM has a limited ca-
pacity — typically 0.1% [63] of flash memory — and it cannot house
the entire mapping table. Thus, FTL uses a cached mapping table
(CMT) to store those “hot” mapping entries in the DRAM, while the
complete table is maintained in flash memory’s translation pages,
organized by a global mapping directory (GMD).

DRAM Data Cache. DRAM is also deployed as a data cache [18, 54]
to absorb I/O requests for low-latency access. For example, the LRU
policy is a classical caching algorithm used for SSDs [88], prioritizing
storing the data that has been recently accessed. If an I/O request hits
data in the cache, it will be serviced by the DRAM without accessing
flash memory.

4 Motivation

In this section, we compare existing host-level and device-level ver-
sioning methods. We then examine how current versioning SSD
solutions fail to track retention time orders, leading to data corrup-
tion. Moreover, we explore the challenges of data versioning in SSD
caches. Finally, we outline the motivation behind proposing LAST
to address these issues.

4.1 Host-Level vs Device-Level Versioning

Host-level versioning has been widely used for data history preser-
vation and is often deployed in the OS, at the filesystem level [6] or
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Figure 4: The ratio of latency increases when cache versioning
is introduced in SSDs equipped with LRU and FIFO policies.
We evaluate them by testing workloads shown in Table 2.

the block layer [100]. However, such approaches have shown critical
limitations.

In general, the OS exposes a larger attack surface to adversaries
because of its large Trusted Computing Base (TCB). Attackers can
exploit this surface to perform privilege escalation [4, 7] and gain
root privilege. Then, they can disable host-level versioning and con-
sequently compromise the data recovery. For example, ransomware
actors can exploit a vulnerability in the anti-cheat driver of Gen-
shin to escalate privileges, allowing them to disable antivirus pro-
cesses [85]. In addition, host-level solutions introduce extra write
traffic for versioning purposes. Thus, they also suffer from significant
performance degradation [84, 87, 96].

In contrast, device-level solutions [46, 96] shift the versioning
enforcement into the storage device to counteract OS compromise.
Moreover, they achieve transparent data preservation without in-
troducing extra I/O traffic. As a result, device-level approaches offer
advantages in defending against privileged adversaries [86] while
incurring trivial performance overhead [96] compared to host-level
methods. Therefore, this work primarily focuses on device-level
versioning methods.

4.2 Characterizing Data Retention in Versioning
SSDs

Flash-based SSDs make a compelling platform for device-level ver-
sioning [45, 46, 79, 96] because of their out-of-place update property
and inherent logging functionality.

Long data retention is crucial for mitigating system compromises,
as discussed in Section 2.4. Thus, we assess data retention efficiency
in an unmodified SSD (Baseline) and current versioning SSDs —
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BVSSD [46] and TimeSSD! [96]. Implementation details are pro-
vided in Section 8.1. We define the retention drop factor (RDF) for
each reclaimed flash page as:

RDF:RTSelected/RTLongest (1)
where RTg,jccreq Tepresents the retention time of the selected erased
data page, and RTponges: is the retention time of the longest-held
page upon the page erasure. If the versioning system can always
pinpoint the page with the longest RT, the RDF of the page is 1,

RTseiected

as RTselected = RTLongest and RDF = Fgfelected = 1, Otherwise, a

ngest

page with a shorter RT might be selected, resulting in RTs,jecred <
RTLongest and RDF <1.

In Figure 1, the RDFs of the SSDs range from 0.2 to 0.7. Specifically,
Baseline, BVSSD, and TimeSSD achieve average RDFs of 0.35, 0.62,
and 0.63, respectively. The small RDFs of BVSSD and TimeSSD are
because they cannot identify the retention time of versioned data,
causing the deletion of data with short retention time. Thus, cur-
rent versioning SSDs exhibit degraded data retention, limiting the
capability of recovering a data compromise.

Motivation 1: Current versioning SSD solutions do not optimally
retain pages in the SSD because they cannot track the order of the
retention time.

For a versioned file, removing its partial pages can result in the
file being unusable. For example, a versioned executable file cannot
be used after its recovery if some of the pages that make up the file
are reclaimed. We call these files shattered. To evaluate the preva-
lence of this issue in state-of-the-art versioning SSDs, we define
VersionRatio for a versioned file:

VersionRatio=NUMge;gined/ NUMTT (2)
where NUMge;gineqd means the number of retained data pages of the
file, and NUMr is the total number of data pages of the file. We cre-
ate 1,000 files, each containing 1MB of data, on versioning SSDs and
delete them after running a FIO [3] random write workload (200GB).
We then run the same FIO workload again to evaluate the ratio
(VersionRatio) of retained pages in each deleted file after execution.
Since the deleted data (over 170GB) generated by a FIO workload ex-
ceeds the total reclaimed data (21.8GB) during GC, the versioned files
should not be reclaimed if the SSD correctly prioritizes data based on
retention time. However, as shown in Figure 2, existing versioning
SSDs, which cannot fully track retention time, may prematurely
erase some data pages in a deleted file (i.e., VersionRatio < 100%),
leading to potential file corruption.

Motivation 2: Current versioning SSDs do not fully maintain
the invalidation order of data pages, leading to shattered files and
decreased file usability after recovery.

4.3 Characterizing Cache Versioning in SSDs

DRAM data cache [18, 54, 88] has been widely used in flash-based
SSDs to boost performance. Incoming data is first served by the cache
before being evicted to the flash memory. However, upon a write
hit to the cache, the cached data is overwritten. This compromises

! Although RSSD [79] is the most recent versioning work, it relies on the same retention
time identification algorithm (i.e., bloom filter) as TimeSSD. Moreover, RSSD requires
dedicated network hardware equipped on the SSD, which is not applied to current
commercial SSDs. Our work aims for data versioning in regular SSDs, and thus we select
TimeSSD as a comparison.
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system security by allowing attackers to overwrite recently writ-
ten data that remains in the cache and has not yet been saved (i.e.,
versioned) in flash memory.

To show this impact, we implement two classical caching policies
(i.e., LRU and FIFO) into regular SSDs [61] equipped with a DRAM
cache shown in Table 1 without cache versioning. Figure 3 shows
that the data cache incurs significant versioned data removal when
testing the workloads in Table 2. Moreover, the removal worsens at
increasing cache size because it results in a higher hit ratio which in
turn means more overwritten data.

Motivation 3: For SSDs equipped with DRAM data cache, they
lose version history for all write-hits in the cache, degrading their
capability to recover data.

An intuitive remedy for Motivation 3 is to perform out-of-place
writes in the data cache upon a write hit. Thus, we implement a
versioning SSD that operates write requests by writing all incoming
data to a free space in the DRAM, even in the case of a write hit.
Read requests operate in the same way as the SSD without cache
versioning. We observe that when the data cache is filled, the write
request incurs a data eviction. We then employ LRU and FIFO to
versioning SSDs thatincorporate cache versioning and compare their
performance with regular SSDs equipped with the same caching
policies. Figure 4 shows that versioning the data cache significantly
increases the average latency over LRU and FIFO regular SSDs by
100.1% and 101%, respectively. This is because, even on a cache hit,
writes are forced to write in a new DRAM space, and thus cache
eviction cannot be avoided.

Motivation 4: Versioning the DRAM cache is challenging because
it can significantly degrade the performance.

44 WhyLAST?

In light of the aforementioned considerations, we are motivated to
propose LAST for the following reasons.

First, attackers with escalated privileges can kill any data protec-
tion process in the OS. LAST remedies this by providing versioning
enforcement inside the storage device, which is hardware-isolated
from the OS, providing resistance against privileged attacks and
outperforming host-level solutions.

Second, since a privileged adversary can disable malware detec-
tion, and compromises often take time to be discovered [73, 102],
it is critical to enable long retention of versioned data to ensure
availability. Therefore, we design LAST to prolong the preservation
of retained data in the storage device.

Third, current versioning SSDs cannot identify the retention time
order for versioned data pages, leading to suboptimal data retention
and shattered files, as discussed in Section 4.2. While bloom filter
(BF)-based methods[79, 96] were introduced to record retention time,
they fail to track the complete data retention order for two reasons:
(1) A BF only tracks the presence of elements (versioned data) but
cannot provide the correlations (order) of the stored versioned data.
(2) DRAM size might be too small to record the full data invalidations
(as happens for TimeSSD [96] and RSSD [79]). It is necessary to
delete the old BFs to release DRAM space, leading to the loss of data
invalidations. In this work, we show how our LAST can track the
complete data retention order for efficient data versioning,.
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Finally, current versioning SSDs do not consider the DRAM data
cache. If a data cache is employed, it can lead to version loss on
write cache hits. Thus, we design LAST to overcome this limitation
by versioning the data in the SSD’s data cache while introducing
minimal overhead.

5 Threat Model

In this work, we focus on adversaries who attempt to compromise
stored data to make it inaccessible; for example, they can employ
ransomware [45] or wiper [9] attacks to prevent users from accessing
their data. Moreover, we assume that the host OS is vulnerable to
attacks from adversaries that can fully compromise it and gain esca-
lated privilege (root) [4, 7, 79, 96, 105]. Thus, the OS is untrusted, and
adversaries can disable and manipulate data protection mechanisms
deployed in the OS.

We trust the firmware of SSD [25, 79, 96] due to its reduced trusted
computing base (TCB) and independent processor and memory,
which provides strong isolation from the host OS. We also assume
that the firmware cannot be modified in the SSD [79, 96], secured by
methods like digital signature and secure boot [24, 25]. We neglect
the data loss risk in the DRAM due to power failure because modern
SSDs typically have capacitor- [21] or battery-backed [50] DRAM.
Thus, we trust storage devices (i.e., FTL) and assume the DRAM
data is preserved during power failure. We trust the hash algorithm
used in our deduplication and disregard its collisions, as we employ
BLAKE?2 [26], which is secure with no known collisions. Preventing
hash collisions [36, 98, 99] is an active research area outside the
focus of this work. Other collision-prevention methods [36, 98] can
be applied to our approach.

We trust the manufacturer of the SSD, as assumed in prior
works [25, 58, 96], to securely generate and embed a credential.
The credentials are distributed to authenticated users and main-
tained securely using existing secure key techniques, such as USB
security key [22]. Thus, we assume that there is a trusted security
administrator to hold the credential securely, which can be used for
authentication when version management, such as data recovery,
needs to proceed. Upon the successful compromise of data by privi-
leged adversaries, the security administrator can disconnect the SSD
and plug it into another trustworthy computer to ensure secure data
recovery [96].

6 LAST Design

In this section, we present an architectural overview of LAST, fol-
lowed by the details of its critical components.

6.1 LAST Overview

LAST employs Versioning Cache Management to manage the DRAM
data cache while tracking the data retention through the data in-
validation sequence. To mitigate the overhead of cache versioning
(see Section 4.3), LAST reserves a dedicated read cache for read
requests. When the DRAM cache is full, Versioning Cache Manage-
ment leverages OPEN to efficiently evict the cached data to flash
memory while preserving the invalidation sequence in the flash
memory. Thus, LAST can leverage Order-aware GC to reclaim data
versions based on invalidation order, avoiding premature removal of
versioned data. Moreover, LAST devises a lineage-preserved dedu-
plication engine (LPDedup) to reduce data writes, enhancing flash
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Figure 5: The 1/0 workflow of LAST. LAST leverages version-
ing cache management (grey area) for incoming I/O requests,
and it manages data eviction from the DRAM to flash memory.

memory lifetime. Finally, LAST offers efficient version management
(Version Manager) for managing retained versions.

Figure 5 shows the I/O workflow of LAST. LAST judges the in-
coming I/Os to determine their request type @. For a read request @,
LAST first queries the data cache. If the read hits, it will be served by
the DRAM cache. Otherwise @, LAST leverages the address trans-
lation to locate the requested data on flash memory and read it to
complete the read. For write requests, the invalidation separate mod-
ule identifies the overwriting data and stores them separately in the
DRAM for tracking their order @. When the data cache is filled @,
LAST leverages OPEN to evict data from the DRAM cache to flash
memory @. Finally, LAST proceeds GC through Order-aware GC
and LPDedup to reclaim versioned data orderly while saving storage
space @.

6.2 Versioning Cache Management

LAST devises cache versioning to retain the data invalidation order
with trivial overhead, containing the following modules.

Read Cache. Since DRAM cache versioning can lead to signif-
icant performance degradation as discussed in Section 4.3, LAST
maintains a read cache region for handling read requests, reducing
read overhead. In Figure 6, LAST creates a read cache list to store
the cached data for immediate access on read hits. If the read data is
not in the read cache or other caches, LAST retrieves it from flash
memory to finish the request and adds the data into the read cache.
For data replacement, we use the classical LRU policy in the read
cache as an exemplar, while other caching methods can be applied.

Multiple data versions exist in the SSD. To ensure reading the
correct (newest) data, LAST leverages the L2P table, which records
the mapping from the logical address to the latest physical data page.
Thus, the read cache can retrieve the newest data version by querying
the L2P table.

Invalidation Separate Module. Since data invalidation deter-
mines the retention time, LAST maintains the invalidation sequence
of versioned data to identify their retention time order. To retain such
sequence, LAST classifies the incoming write data into first-time and
overwriting categories, where overwriting requests invalidate exist-
ing data. Thus, the invalidation order can be tracked by maintaining
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Figure 6: Introduced data structures (grey area) of LAST. LAST
manages the data cache through link lists and introduces CLT
and Overwriting Group List to store the invalidation order.
CHT and GHD are used for LAST deduplication.

the arrival of overwriting requests sequentially. Since deletion re-
quests (e.g., Trim [11]) can also invalidate data, LAST transfers a
deletion request to an overwriting operation by writing with 0s.
In Figure 6, LAST creates first-time and overwriting cache lists to
maintain first-time and overwriting data, respectively, in the data
cache. The invalidation (retention) order can be maintained by indi-
vidually caching overwriting data sequentially based on arrival time
in the overwriting cache list. For a write request, LAST checks the
LPA to PPA mapping table to determine its data type. If the accessed
address does not exist in the cached mapping table (CMT) and has
no entries in the full mapping table in flash memory, which can
be queried through the global mapping directory (GMD), the write
request is directed to the first-time cache. Otherwise, the data is
sent to the overwriting cache. Data within these caches is organized
into linked lists, with newer entries added to the end as shown in
Figure 6, maintaining the invalidation order for effective version
management.

Order-Preserving EvictioN (OPEN). OPEN handles data evic-
tion for the first-time and overwriting cache regions, and it aims
to store adjacent data pages from first-time or overwriting regions
in the same flash block sequentially, mirroring their order in the
data cache. However, this requires evicting data from the cache to
a flash block sequentially, breaking the parallelism usage of flash
memory [91] and leading to non-trivial performance overhead [104].
To avoid this, LAST leverages OPEN to organize data into eviction
groups, each sized to match the parallelism of the flash memory.
Then, OPEN selects blocks with the same block ID (BID) from each
plane in flash chips to store the data in an eviction (e.g., overwriting)
group. Unlike traditional caches that evict adjacent data into dif-
ferent flash blocks, OPEN selects interleaved data from an eviction
group and evicts? them in parallel while maintaining invalidation
order in a flash block, as illustrated in Algorithm 1.. This method also

ZEviction prioritizes the filled cache region matching incoming I/O types (overwriting
or first-time). If the device is idle, first-time or overwriting cache regions are processed
in FIFO sequence.

CCS ’25, October 13-17, 2025, Taipei

Algorithm 1 Interleaving Eviction of OPEN.

Input: N_CHs = Number of channels, N_LUNs = Number of flash chips
N_PLs = Number of planes, N_PGs = Numer of pages in a block
PGs_per_CH = Number of pages per channel
PGs_per_LUN = Number of pages per chip
PGs_per PL = Number of pages per plane
BLKs_per_PL = Number of blocks per plane
BID = Current block ID for data group

: NUM=N_CHs«*N_LUNs*N_PLsxN_PGs

: PG Set={}

: if First-time region or overwriting region filled then

PG_Set ={NUM of adjacent pages in the cache region}

: end if

: for PG in{0,1,...N_PGs—1}do

for PLin{0,1,...N_PLs—1}do

for LUN in{0,1,..,N_LUNs—1}do
for CH in{0,1,..,.N_CHs—1}do
Evic_Data=PG_Set[PG + PGs_per_PL*PL +
PGs_per LUN*LUN + PGs_per_CH*CH]

11: Flush Evic_Data to the address (CH, LUN, PL, BID, PG)

12: end for

13: end for

14: end for

15: end for

16: BID = (BID +1) % BLKs_per_PL

D0 0N DU W

—_

preserves the spatial locality of data, and versions with similar reten-
tion times are likely to be stored in the same data blocks, reducing
GC overhead. Finally, OPEN creates an overwriting group list to track
the invalidation sequence between evicted overwriting groups, and
each overwriting group is related to a unique BID, which records the
location of the data group in the flash memory.

Unlike traditional update-allowed cache, LAST can evict data with-
out waiting for the cache regions to fill. OPEN leverages real-world
workload idleness and high internal parallelism of flash memory to
deploy background eviction. Real-world workloads often exhibit idle
times [66], allowing the system to schedule background tasks [60, 96]
for better performance. Moreover, flash memory can process multi-
ple I/O requests simultaneously due to its internal parallelism. Thus,
OPEN assesses idleness by monitoring flash memory bandwidth,
differing from traditional idle time prediction [60, 96]. If the current
write bandwidth exceeds a threshold (i.e., 20% of peak write band-
width), OPEN stops background eviction; otherwise, it continues
without waiting for cache regions to fill.

The cache flush command [101] is widely used in the storage
device to ensure data consistency. It compels to flush the data from
the cache to the flash memory. LAST enables such enforcement in the
SSD. Upon a flush command, LAST forces the data eviction from the
first and overwriting caches to flash memory with the same method
as the background eviction.

6.3 Order-aware GC

LAST initiates GC when the ratio of free pages is lower than a thresh-
old (e.g., 20%). LAST chooses versioned data to erase sequentially
based on their retention times. Therefore, LAST needs to (1) search
the overwriting data to determine the retention time and (2) pinpoint
the location of versioned data.

Figure 7 shows the GC workflow. Overwriting groups are sequen-
tially organized in the overwriting group list, with the head group
representing the earliest data invalidation. LAST selects this group
for garbage collection @. Time lineage information is stored in the
out-of-band (OOB) area of each flash page [96] to track data versions
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Figure 7: Example workflow of GC and deduplication in LAST.
Pages (0’ to 7°) will be reclaimed as the data in the head group
invalidates them. If LAST’s deduplication identifies identical
content, multiple data versions share the same flash page.
Since the hash value of page A exists in the hashing table, it
will not be migrated, and its reference count will increase by 2.
The fingerprints of B and C do not exist in the hashing table;
they will be migrated to a new flash block, and their hashing
metadata will be inserted into the table.

(details in Section 6.5). LAST traverses the OOBs of data pages in
the head group to locate versioned data for reclamation @. Then,
it copies the valid and versioned data pages to free blocks, updates
their OOBs, and erases the selected blocks.

6.4 Lineage-preserved Deduplication

LAST utilizes lineage-preserved deduplication (LPDedup), which
operates during GC, to save storage space. LPDedup preserves the
invalidation order by maintaining the ordered layout of data within
overwriting groups. InFigure 7, LAST computes the fingerprint using
BLAKE?2 [26], a fast hash algorithm used in deduplication SSDs [98].
It then searches a hash table to verify if the data exists @. Each hash
table entry is a key-value pair that uses the fingerprint as the index,
followed by the address and reference count, which indicates the
number of pages that share the fingerprint. Since DRAM cannot store
all fingerprints and only a small fraction (10%-20% [31]) are highly
duplicated, LPDedup maintains a cached hash table (CHT) in DRAM
for recently accessed fingerprints, while the full table resides in flash
memory and is managed by a global hashing directory (GHD). LAST
splits the hashing space into segments with equation Seg = H(P)
mod n, where H(P) is the hash value of a data page P and n is the
number of required data pages for the hashing table. Fingerprints
in a flash page share the same Seg, and the GHD maps each Seg to
its physical page address, allowing for querying of the full hashing
table.

When migrating a page during GC, if its fingerprint is not found
in CHT or the hashing table stored in flash memory, LAST copies the
data to a new flash block @ and adds the fingerprint to the CHT ®.
Otherwise, it skips copying the data and updates or inserts — upon
amiss in CHT- its hashing information in the CHT. Finally, LAST
updates the metadata within the OOB ® in an out-of-place manner
by adding a new entry in its OLT using a partial page program> [75]

3For the SSD not supporting partial programming, LAST allows to redesign the OOB
metadata management by storing the OLT information into flash memory directly and
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Figure 8: Example of LAST data lineage management. In CLT,
when a data page (e.g., AD1) is evicted to flash memory, the
metadata of the page (AD2) that overwrites the evicted data
will be updated by changing its NAD to the new flash address
(PPA). In OLT, each entry indicates a lineage. The OOB of page
H includes two entries to indicate the previously recorded
lineage information on pages C and F after deduplication.

for lineage management (see Section 6.5), following erasing the
selected flash blocks @. Since erasing a page requires adjusting the
reference count (CNT) in the hash table or deleting the entry if the
CNT reaches zero, LAST updates the CHT if it’s cached. If not, it
retrieves the hash mapping from flash memory, updates the entry,
and writes it back to a new page.

6.5 Metadata of Versions

LAST records the updating correlations of the data stored within
the DRAM cache and flash memory through a Cache Lineage Table
(CLT). CLT contains the reflection between a data page in the cache
and its metadata, which includes data creation time, the DRAM
address (AD), the address (NAD) of the next data page updated by
the current data, and the address (PAD) of the previous data page
that updates the current data. When a data page is evicted from
the cache to flash memory, LAST updates the CLT to maintain the
lineage between the data page in the data cache and flash memory
shown in Figure 8.

Since LAST introduces deduplication, multiple versioned or valid
pages can share a physical flash page. Thus, LAST must identify the
correct lineage from the duplicated data page, which can comprise
multiple data lineages. In Figure 8, LAST creates an OOB Lineage
Table (OLT) in the OOB area of each flash page to store metadata. The
OLT of each flash page OOB comprises multiple entries representing
different versioning chains to store the lineage information. Since
the space of the OOB area is limited, LAST only allows ten lineage
entries in an OLT, and we evaluate its sufficiency in Section 8.2.

6.6 Version Manager

LAST provides a lightweight tool for version management.
Version probe. To query the versioned data, users need to provide
the address (LPA) and the creation time of the data. We thus provide

reserves a DRAM portion for updating lineage information, similar to the management
of hash table.
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Table 1: Parameters of the SSD used in our evaluation.

Parameters Value Parameters Value
SSD Capacity | 512GB OOB Area 409B
Page Size 4KB OOB Read 0.02ms
Pages/Block 256 Page Read 0.04ms
Blocks/Plane 16384 Page Write 0.2ms
Planes/Chip 1 Block Erase 2ms
Chips/Channel 8 Data Cache 300MB
Channels 4 Metadata DRAM | 200MB

two interfaces for versions’ probe: TimeProbe(LPA) and PGProbe(LPA,
time). TimeProbe will return all the timestamps of versioned data us-
ing the LPA. Based on the LPA, LAST can query the address mapping
table to acquire the PPA of the latest data. Then, LAST will query
the CLT and OLT to get the timestamps of versions. Thus, LAST
could return the timestamps to users through TimeProbe. Once users
receive the timestamps of versions, they can query the versioned
data through the interface PGProbe with the LPA and time. PGProbe
will look at the L2P table to locate the latest data and then query the
lineage tables (i.e., CLT and OLT) to return the versioned data to
users based on the time.

Version rollback. Users may backtrack their data to a past ver-
sion. Thus, LAST provides an interface - RollbackPG(LPA, time) - to
enable the rollback of an individual data page. Specifically, LAST
queries the mapping table to locate the latest PPA. Then, based on the
PPA, LAST searches the CLT or OLTs using the time to find the target
version. In the end, LAST updates the L2P table. We further propose
an interface RollbackAll(time) to enable an SSD-wide rollback. When
a user requests to recover the SSD to a prior time ¢ after an attack,
LAST needs to revert the entire disk to the previous time point t. First,
LAST queries all the entries in the L2P table. Then, LAST traverses
all of the versioned pages through CLT and OLTs to get the PPAs
of the latest data pages before time t. Finally, LAST updates the L2P
table with new PPAs to finish the rollback.

6.7 Implementation

We implement LAST on FEMU [61], a prevalent QEMU-based em-
ulator widely used for SSD-related research [43, 47, 95]. In Ta-
ble 1 [61, 78], the SSD consists of 512 GB flash memory and 500
MB DRAM (0.1% of flash memory [65]) where we allocate 200 MB
for the metadata and 300 MB for the data cache. For the metadata,
we allocate 100 MB for CMT [64] and 8 MB - sufficient for tracking
the mappings of all the pages — for the GMD. Moreover, we allocate
16 MB [31] for the CHT, 14 MB for the GHD, 0.2 MB for the Over-
writing Group List, and 1.3 MB for CLT. Thus, the total metadata
introduced by LAST will be 31.5 MB, and we will validate their rea-
sonability in Section 8.2. In addition, we allocate 16% data cache for
the first-time cache, 16% data cache for the overwriting cache, and
68% data cache for the read cache. Moreover, we allow 10 entries in
the OLT. We modify the FTL to create a backdoor, allowing users to
send version management commands and receive results. Finally,
we scale the SSD processor’s clock rate to 0.5 GHz from our 3.2GHz
host CPU by multiplying the table query time of I/Os in FTL with
6.4.

7 Security Analysis

Security Improvements. LAST advances security over existing
in-device versioning in three ways: (1) LAST retains data upon its
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arrival in the storage device, whereas current versioning SSDs store
data in their DRAM cache, which can lead to data loss. LAST thus
provides more data versions to remediate system breaches. (2) LAST
maximizes the SSD’s ability to preserve versioned data as it avoids
erasing versions with short retention time, which can significantly
prolong the overall retention time, as shown in Section 8.5. For ex-
ample, stealthy ransomware like Vipasana* writes minimal data,
delaying detection. LAST’s retention-aware design preserves data
for extended periods, enabling recovery even after prolonged stealth
operations. The longer fail-safe time window is critical for system
recovery. (3) LAST avoids creating shattered files, as shown in Sec-
tion 8.5, which ensures the integrity of versioned files for better
recovery. In contrast, existing versioning SSDs can lead to shattered
files, making their recovered data unusable, as discussed in Sec-
tion 4.2.

Attacks on Versioning SSDs. Our LAST platform is resistant to
compromise for the following reasons: (1) If attackers write and
delete a large amount of data in a short time and force GC to over-
whelm the SSD [79], the abnormal activities can be easily noticed by
users [96] because the performance and available storage capacity
will be significantly decreased, impeding normal applications. Note
that we do not address anomaly detection in this work, as it is an
active research area with extensive literature [27, 52, 57, 105], which
is orthogonal to our data versioning target. (2) LAST achieves a long
retention time of up to 126.4 days as discussed in Section 8.5. Mal-
ware often seeks to finish an attack quickly [45, 96]. If the malware
attempts a “low and slow” attack of slow updates to the SSD, the re-
tention time will remain high, leading to a high risk of being detected.
(3) Flash memory capacity continues to increase due to new NAND
flash technologies (e.g., QLC SSD [23]); for example, the largest SSD
can be 100TB [17]. A large SSD makes the slowly-writing GC attack
difficult as it will take an impractically long time to force GC.

How Long Should Historical Data Be Retained? In the worst-
case scenario, attackers can remain undetected within a victim sys-
tem for extended periods. This suggests that historical data should
ideally be stored indefinitely. However, due to limited storage capac-
ity and associated costs, it is not feasible to maintain infinite data ver-
sions. Therefore, LAST seeks to maximize historical data protection
within storage capacity constraints. To achieve this, LAST employs
an approximate-optimal data versioning strategy that avoids remov-
ing recently retained historical data, focusing instead on reclaiming
data that have been stored the longest. In addition, to mitigate the re-
tention limitations of currently versioning SSDs, employing higher-
capacity SSDs can be beneficial - particularly given the emergence
of more affordable, large-capacity SSD devices [17, 23].

Broader Security Engagement. LAST benefits from trusted com-
puting primitives. For example, (1) to ensure the authenticity of
SSD’s firmware, a trusted platform module [40] can be integrated
into the SSD to ensure the integrity of SSD firmware before boot,
as it can maintain cryptographic keys securely and provide remote
attestation. (2) Trusted execution environments (TEE) could provide
an extended trusted computing boundary for complex operations
in the SSD. Thus, integrating TEE with LAST can provide advanced
version management using file-level semantic information [105].

4Hashtag: 8d2c4c192772985776bactd77f7bc4d9.
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Table 2: The characteristics of evaluated traces.

Name | ID | Write Ratio | Daily Write
hm 0 | M1 73.7% 2.9 GB/Day
prxy_0 | M2 96.9% 7.7 GB/Day
MSR | rsrch_ 0 | M3 90.7% 1.5 GB/Day
wdev_0 | M4 79.9% 1 GB/Day
mds_0 | M5 88.1% 1 GB/Day
mail F1 58.8% 141.5 GB/Day
FIU web F2 78.6% 1.8 GB/Day
homes | F3 99.1% 3.8 GB/Day
dev_1 Al 99% 4.4 GB/Day
ALI dev_2 | A2 99% 11.6 GB/Day
dev. 3 | A3 95% 11 GB/Day

LAST can be integrated into forensic workflows, supporting the
analysis of system activity. For example, in the event of a cyberattack,
LAST preserves historical filesystem metadata (e.g., inodes) and
data content for a long time in a trusted manner without being
compromised by privileged attackers. This can be used by security
administrators to reconstruct the chain of the attack and identify its
root cause after the occurrence of the attack.

8 Evaluation

This section answers the following research questions: (Q1) How
much space will versioning metadata consume? (Q2) What is the
performance of LAST? (Q3) How does LAST affect the lifetime of
the SSD? (Q4) How long can the versions be retained in LAST?
(Q5) Can LAST eliminate or alleviate shattered versions? (Q6) How
efficient the version manager is? We evaluate the space consump-
tion of metadata (Q1) in Section 8.2. LAST s performance (Q2) is
assessed in Section 8.3. The impact on SSD lifetime (Q3) is examined
in Section 8.4. Finally, we answer (Q4), (Q5), and (Q6) in Section 8.5.

8.1 Experimental Setup

Environmental Setup. We use an Intel Xeon E3-1245v5 @ 3.50GHZ
8-core processor with 64GB DRAM. Ubuntu 20.04.5 with kernel 5.13.4
is deployed as the host OS. In addition, we allocate a 50GB QCOW2
image file and install Ubuntu 18.04 along with kernel 4.15.0 to build
a guest system on FEMU; we allocate 4GB DRAM to the guest with
four vCPUs.

Comparison Selection. We implement multiple current regular
and versioning SSDs for comparison.

(1) Baseline. This is a regular FEMU SSD equipped with LRU [49]
policy without cache versioning.

(2) Baseline-BGE. This is a variant of Baseline with the background
eviction, similar to LAST.

(3) LAST variants. LAST-NoRCA is a variant of LAST without the
read cache. Similarly, LAST-NoBGE is created by removing back-
ground eviction, and LAST-NoDedup is obtained by disabling the
deduplication feature.

(4) Versioning, BVSSD, and TimeSSD. Since current versioning SSDs
overlook cache versioning, we borrow LAST’s interleaving and back-
ground eviction strategies to an unmodified FEMU SSD (Versioning),
BVSSD [46] and TimeSSD [96] for a fair comparison. All incoming
data writes are first served by the DRAM cache in a logging fashion
without removal. Finally, we re-implement the design of BVSSD and
TimeSSD in the flash memory as follows. BVSSD sets a global GC
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threshold to monitor the ratio of free pages instead of at the chip
level while using a greedy algorithm to select data blocks during GC.
We implement TimeSSD Bloom filters (BFs) using an open-source
library [2]. Each BF stores 100,000 invalidated PPAs with 0.01% false
positives rate and occupies 234KB of memory [1]. We allocate 64MB
of DRAM - as in TimeSSD - for BFs and compression buffers, allow-
ing up to 280 BFs and tracking 106.8GB of invalidated data. Moreover,
we implement TimeSSD to compress data during GC at a 20% [96]
ratio using LZF [5] and use a greedy algorithm for block selection
during GC. Finally, the SSD parameters are consistent with LAST,
including 300MB data cache and 200MB metadata.

Workloads and Evaluation Method. We run experiments using
the FIO benchmark [3] and real-world workloads from MSR [70],
FIU [56], and Alibaba [12], as detailed in Table 2. The Alibaba traces
provided enough data to trigger GC. However, the write sizes from
MSR and FIU are too small to initiate GC. Thus, we duplicate MSR
and FIU traces with an incremental offset (2GB) to the addresses at
each duplication [96].

To evaluate performance (Figure 10 and Figure 14), we first fill the
cache using FIO with a sequential write workload. Then, we run 1
million traces as a warm-up before conducting formal experiments,
maintaining a 10:1 ratio of warm-up to formal traces [104]. However,
the warm-up traces do not trigger GC in the experiments of Figure 14.
We run the duplicated MSR and FIU traces and the full Alibaba traces
to make the SSD close to full before starting the warmup-formal
performance evaluations. For other experiments (i.e., Figure 16-??)
that require GC, we employ only the duplicated traces and the full
Alibaba traces. Note that all experiments run for four times.
Deduplication Setup. We use BLAKE2 hash algorithm and set
the hashing latency to 10us, consistent with previous deduplication
SSDs [98]. We evaluate the ratio of detected replicated data in the FIU
workloads as the deduplication ratio, and their ratios of mail, web,
and homes are 89.3%, 58.3%, and 33.5%, respectively. Then, we use the
deduplication ratios when running the FIU traces. For MSR and ALI
traces that do not have hash information, we set their deduplication
ratio to a lower value (20%), matching the compression ratio in
TimeSSD [96].

8.2 Metadata Size Testing

We evaluate only the reference counts of FIU in Figure 9, as other
traces do not include hash fingerprints. Over 96% of fingerprints in
FIU traces have reference counts of no more than nine. Since an OLT
supports 10 entries, it is sufficient for storing lineage. Moreover, the
OOB area consumes a maximum of 280 bytes for the OLT, fitting
within the typical 409B size (10% of a flash page [62]). Thus, the OOB
area is adequate for storing lineage metadata. In the worst case, if
LAST directs the data to a flash page with a full OLT (i.e., 10), the
page will not undergo deduplication and will instead be written to a
free page.

Current versioning SSDs use BFs to track data invalidation [79,
96], requiring substantial DRAM; for example, a 512 GB SSD needs
306.8MB DRAM [79, 96]. This requirement increases with larger
SSDs as more invalidation information must be stored. To avoid
overwhelming DRAM, prior works only reserve partial invalidations
by allocating 64MB [96] to the BF. However, this leads to the loss
of invalidation information, degrading the ability to reconstruct
versioned dataand harming availability. In contrast, LAST needs only



Enabling Secure and Efficient Data Loss Prevention with a Retention-aware Versioning SSD

®== F1 F2 == F3
gy 10 o
5 | a@urnmmnettt L Aad
23 s
< S e o 3
] n---';'_':'.." ER—— e P T S manm Simna=rt
= [ 2 | | | | |
80% 85% 90% 94% 95% 96%
Percentiles

Figure 9: Reference count of FIU traces at tail percentiles.

31.5MB of DRAM for metadata, as it directly records the invalidation
sequence in the data layout of flash memory.

8.3 Performance Testing

Performance without GC Triggered. InFigure 10, LAST increases
average latency over the Baseline SSD by 1.5%. LAST introduces
trivial latency overhead for the following reasons. (1) LAST creates a
read cache for incoming read requests. (2) OPEN proactively releases
the first-time and overwriting caches in the background to avoid
cache eviction. (3) Hash operations occur during GC, outside the
critical I/O path. Baseline-BGE increases the latency over LAST
by 9.3%, as Baseline-BGE proactively evicts data from the cache,
decreasing read performance. Thus, current DRAM-cached SSDs
typically do not adopt background eviction in their design [41, 64, 89].
Additionally, LAST-NoBGE increases latency by 139.3% over Baseline
due to unavoidable data eviction from cache versioning. Without
read cache (LAST-NoRCA), LAST s latency for the F1 (mail) workload
increases over Baseline 41.9x. For other workloads, LAST-NoRCA
increases latency over regular SSDs by 30%. These results indicate
that the read cache is critical for SSD’s performance, especially for
workloads like F1 that have a higher ratio of read requests.

For versioning SSDs, we evaluate only BVSSD and TimeSSD, as
BVSSD shares the same caching policy as Versioning, yielding iden-
tical performance without GC. Figure 10 shows that LAST decreases
the average latency over BVSSD and TimeSSD by 7.7% and 10.3%, re-
spectively. LAST achieves better performance due to its read caching
region. Moreover, TimeSSD’s Bloom Filter (BF) computations occur
in the critical I/O path; the BF processing latency (1us) is amplified
by the DRAM cache, leading to higher overhead.

Write Bandwidth. We evaluate the write throughput of LAST and
Baseline when running sequential (SW) and random write (RW)
workloads in FIO at various request sizes. Figure 11 shows that LAST
achieves a better bandwidth than Baseline when request sizes are
under 32KB. LAST performs better at lower incoming throughput.
When the incoming throughput reaches the threshold (20% of the
highest bandwidth), LAST stops the background eviction. Thus,
LAST approximates the bandwidth of Baseline after 32KB.

Read Bandwidth. Figure 12 shows the bandwidth of LAST and
Baseline when increasing the DRAM cache size. Since LAST creates
aread cache, we evaluate the sequential read (SR) and random read
(RR) workloads using FIO. LAST works efficiently when the SSD
offers hundreds of megabytes of data cache, which is a practical size
of modern SSDs [13, 18, 19, 90].

Cache Partition. We evaluate the data cache partition in Figure 13.
Increasing the write cache ratio from 35% to 80% resultsina 2.1%
increase of random write (RW) bandwidth, indicating that larger
write caches provide minimal performance benefits. This is because
background eviction efficiently flushes data to flash memory. In con-
trast, random read (RR) bandwidth is decreased by 8.2% as the write
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Figure 11: Write bandwidth of Figure 12: Read bandwidth of
LAST at various request sizes. LAST at various cache sizes.

cache expands, reducing the capacity of the read cache. This decrease
becomes even more detrimental for workloads with a higher hit ratio.
In F1 (mail), the access latency of LAST with a 35% write cache is
22.9% higher than with a 65% write cache. Thus, our implementation
allocates the minimum required DRAM space to write caches, while
reserving the majority of DRAM space for the read cache.
Performance during GC. In Figure 14, when GC is triggered, LAST
incurs a latency overhead of 5.1% over the Baseline SSD. Baseline
achieves better performance as it neglects cache versioning. How-
ever, LAST mitigates the overhead through background eviction and
deduplication techniques. Moreover, the hash latency (10us) is far
less than the latencies of flash write (200us) and erase (2ms). Thus,
the hash overhead is trivial, and LAST incurs minimal overhead over
regular SSDs.

Figure 14 also shows that LAST reduces the average latency over

Versioning, BVSSD, and TimeSSD by 23.6%, 23.7%, and 72.7%, respec-
tively. LAST outperforms existing versioning SSDs, as LAST reserves
a read caching region for read requests, and it retains the spatial
locality of versioned data in a data block, helping to concentrate
versioned data pages into fewer flash blocks for less data migration.
Additionally, LAST decreases the latency over LAST-NoDedup by
4.2%, as the deduplication can decrease the data migration during
GC.
GC Execution Time. We evaluate the execution time of a GC op-
eration in Figure 15. LAST increases the average GC latency over
Versioning and BVSSD by 3.8% and 6%, respectively, but reduces it
over TimeSSD by 94.1%. LAST does not significantly prolong GC
execution because it maintains the spatial locality of data in flash
memory, minimizing page migrations. Moreover, LAST’s dedupli-
cation reduces page migrations during GC. Our results show that
disabling deduplication (LAST-NoDedup) increases GC latency by
50.1%, demonstrating the effectiveness of our deduplication.

8.4 Lifetime Testing

Write amplification (WAF) is the ratio of data written inside storage
to the data written by users, where alarge WAF indicates a worse stor-
age lifetime. Figure 16 shows that LAST increases average WAF over
Versioning and BVSSD by 1.5%. Moreover, LAST-NoDedup increases



CCS ’25, October 13-17, 2025, Taipei

RW

—
wu
(=]

[ Baseline [[] Versioning [] BVSSD [J TimesSD [ LAST ] LAST-NoDedup

Weidong Zhu, Carson Stillman, Sara Rampazzi, and Kevin R. B. Butler

[ Versioning [ BVSSD [J] TimessD [ LAST [f] LAST-NoDedup

Bandwidth
(MB/s)
S
T
Normalized

| S L LTI °
35% 50% 65% 80%

Write Cache Ratio

M1 M2 M3 M4 M5 F1

F2

GC Latency (s)

P 74 168 T T ) e R L1 1108

F3 Al M1 M2 M3 M4 M5 F1 F2 F3 Al A2 A3

Figure 13: Bandwidth of LAST Figure 14: Normalized latency of Baseline, current Figure 15: Average GC execution time of

at different write cache ratios.

[ versioning ] BVSSD [ TimessD [ LAST ] LAST-NoDedup

versioning SSDs, and LAST during GC.

[ Versioning [ BVSSD [ TimessD [ LAST [ LAST-NoDedup

LAST and versioning SSDs during GC.

[l Versioning [ BVSSD [[] TimessD [ LAST ] LAST-NoDedup

=
S 100% EN
b
b a
> 2 g
vy 50% k)
el S
g g
i z 0% 3
M1 M2 M3 M4 M5 F1 F2 F3 Al A2 A3 M1 M2 M3 M4 M5 F1 F2 F3 Al A2 A3 M1 M2 M3 M4 M5 F1 F2 F3 Al A2 A3

Figure 16: Write Amplification Factor Figure 17: Ratio of available versions of cre- Figure 18: Average retention of erased

(WAF) of LAST and versioning SSDs.

the WAF value over LAST by 0.2%. LAST incurs trivial lifetime degra-
dation. LAST can directly locate the flash block that contains expired
data through the data group in the overwriting group list. Since data
spatial locality is preserved in each data group, the expired data pages
are likely to be maintained in fewer blocks. Thus, LAST achieves
negligible lifetime overhead over BVSSD. Moreover, LAST decreases
the WAF over TimeSSD by 37%. Since TimeSSD is not aware of the
number of expired pages, which are not recorded by valid BFs, in
selected blocks during GC, they may contain a significant amount
of unexpired data, which should be migrated, burdening the SSD’s
lifetime.

8.5 Version Availability and Manager Testing

Shattered Version. We test the ratio of retained versions of 1,000
deleted files after GC in versioning SSDs and LAST. Using a method
similar to that in Section 4.2, we split the trace into two halves. Then,
we ran the first half, deleted the 1,000 files, and ran the second half.
Notably, the traces do not access the created files. In Figure 17, both
LAST and LAST-NoDedup maintain 100% versioned files, whereas
Versioning, BVSSD, and TimeSSD only retain 42.8%, 10.1%, and 41.6%
of versioned data, respectively. LAST reclaims versioned data based
on the invalidation order, avoiding early deletion of versioned data.
In contrast, existing versioning SSDs cannot track retention times,
leading to premature removal of versioned files.

Retention Time. Figure 18 shows that LAST prolongs the aver-
age retention time of versioned data over Versioning, BVSSD, and
TimeSSD by 165.9%, 96.5%, and 61.4%, respectively. LAST retains
data by up to 126.4 days (M4) with an average of 52.6 days, whereas
existing versioning SSDs can only achieve 19.8 days, 26.8 days, and
32.6 days on average, respectively. LAST avoids erasing versions
with a short retention time. In contrast, BVSSD has no versioning
policy to prolong the lifetime of deleted data. TimeSSD cannot track
the invalidation sequence of each versioned flash page or infer the
invalidation sequence of expired BFs due to limited DRAM capacity,
as discussed in Section 8.2.

Version Manager. We evaluate the effectiveness of version manager
in Table 3. TimeProbe, PGProbe, and RollbackPG operate at page
granularity, and they can be performed quickly with a few millisec-
onds to finish per-page management. In M4 and M5 workloads, they

ated files in LAST and versioning SSDs.

pages in LAST and versioning SSDs.

Table 3: Execution time of LAST version manager.

M1
0.6

M2 | M3
93.7] 1
0.4 52.9] 0.9
0.4 166.9] 0.9
31.2| 20 |49.2

M4
549.1
407.7
453.3

36.3

M5
777.4
574.2
643.5

37.8

F1
0.3
0.07
0.03
14.4

F2
0.3
0.2
0.3
19.3

F3

3.5

2.9

2.1
29.3

Al

6.3

5.3

5.3

49.3

A2

6.4
5.3
5.3

49.3

A3

4.6

3.5

3.4

78.4

TimeProbe (ms)
PGProbe (ms)
RollbackPG (ms)
RollbackAll (s)

have a much longer operating time because the queried data was
updated many times (e.g., 27,000 times in M4 of TimeProbe), leading
to heavy queries in the OOB area. Finally, LAST can rollback the SSD
to a previous state in no more than 80 seconds through RollbackALL.
These results show that LAST achieves fast version management.

9 Discussion

Consistency in the Data Cache. To ensure the consistency of the
data stored in DRAM cache, modern SSDs typically employ power
loss prevention (PLP) measures (e.g., supercapacitor [21]) to keep
the DRAM cache powered upon a power failure for milliseconds [81]
or even seconds [82] to flush data from the data cache to flash mem-
ory. Therefore, LAST adopts the existing PLP methods employed in
modern SSDs to ensure data consistency in the data cache.
Caching Algorithms. The caching methods of SSDs are classified
into write-through [90] and write-back [18, 41, 54, 64, 88, 89] policies.
However, the write-back scheme is predominantly employed in SSDs
for two reasons. (1) The write-through policy concurrently writes
data into the data cache and flash memory, exposing the latency
of the slow flash memory for data writes. In contrast, the write-
back policy serves I/Os with low-latency DRAM on a cache hit. (2)
The write-through policy degrades the lifetime of flash memory by
writing data into it even when the data hits the data cache. Thus,
LAST considers the write-back cache due to its prevalent use in
modern SSDs.

Extensibility. LAST is compatible with other versioning techniques.
For example, since LAST deduplication computes hash fingerprints
with flash page granularity, we could deploy compression at page
level as used in TimeSSD [96] to further decrease space consumption.
Moreover, LAST can be used in RSSD to select versions with long
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retention time sequentially and store them in the cloud storage
instead of in the local SSD.

While LAST employs data versioning with the write-back policy,
LAST can also be incorporated into the SSD equipped with the write-
through data cache. Specifically, we can create two write pointers
for incoming data, where each write pointer is assigned with a data
group (see Section 6.2). Therefore, we can monitor the incoming data
to write the first-time and overwriting data into the flash memory
using two write pointers separately. We leave this as an extension
for our future work.

Impact on Other FTL Modules. LAST modifies the caching and
GC modules of the SSD’s firmware. However, it remains compatible
with other FTL functionalities. For example, LAST leverages current
address mapping methods [42, 48] to manage the mapping table.
Wear-leveling can operate at the granularity of data groups (see Sec-
tion 6.2), and LAST uses the current wear-leveling approach [30]
to distribute wear evenly across flash blocks. Finally, LAST is com-
patible with bad block management, which transparently replaces
broken data pages with good ones [53] for address translation.
Limitations and Future Directions. While LAST significantly
improves the availability of versioned data to alleviate the risk of
data loss, it still suffers from the following limitations. (1) LAST
maintains versioned data at the storage level, which lacks semantic
context (e.g., provenance), limiting forensic utility. An interesting
direction is to integrate semantic inference for enhanced recovery
and forensic efficiency. (2) With limited storage capacity, retention
time may degrade under heavy workloads. A promising direction is
analyzing how real-world workloads affect retention and exploring
integration with high-capacity storage (e.g., QLC SSDs).

10 Related Work

Host-level Versioning. Partial versioning retains a subset of data
states such as using snapshots [10, 97], logging [80], or selective
backups [32, 69, 93]. Ext3Cow [76] provides a file versioning and
snapshot. Subramanian et al. [87] proposed ioSnap to efficiently snap-
shot system state within flash-based storage. However, they both
preserve a limited data lineage and cannot eliminate the possibility
of data loss.

Eidetic versioning [33, 46, 69] is a technology that can record
and recall any past data. Peabody [68] is a full-versioning system
for HDD that exposes the disk as an iSCSI target in the block layer.
However, privileged attackers can destroy Peabody backups, and the
drive cannot provide recovery service. Devecsery et al. developed
an eidetic system [38] for hard drives to recover past data within an
OS by leveraging information flows between processes. However,
it strongly relies on the software stack, making it vulnerable to
privileged attackers.

Device-level Versioning. Device-level methods deploy data ver-
sioning in the storage device. S4 [86] provides log-structured meta-
data versioning. However, it neglects the caching versioning and
cannot track data retention. FlashGuard [45] prevents the deletion
of potential victim data from privileged ransomware. However, it
cannot protect data from non-read deletion, such as wiper attacks [8].
RSSD [79] offloads versions to remote cloud providers as they are
cheaper and provide more storage space. However, it requires the
SSD to provide in-storage ethernet, increasing financial cost. More-
over, the SSD price is continuously dropping [20], mitigating the cost
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of local SSDs compared to cloud storage. Finally, the cloud storage
enlarges the TCB with the risk of data loss [16] and cannot be trusted
in some cases [58].

11 Conclusion

LAST is an ordered versioning system that retains data history in
the storage and allows users to manage the maintained versions
securely. LAST considers DRAM in versioning SSDs and stores the
overwriting data independently to track the invalidation sequence
for the reclamation of GC. We evaluate LAST across multiple real-
world workloads and compare it with existing SSDs; LAST ensures
high availability of versioned data without significant overhead.
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